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Abstract—This paper proposes a novel time-series similarity
metric, called Flexibility Distance (FD), to quantify the effort
required to reshape one energy profile into another by jointly
considering amplitude modifications and temporal shifts. Unlike
conventional measures, such as Euclidean Distance (ED) and
Dynamic Time Warping (DTW), FD is specifically designed to
capture key aspects of load flexibility, including peak shaving,
load shifting, and adaptive consumption. This enables more
effective demand-side management, improves grid efficiency, and
facilitates the integration of renewable energy. The proposed
metric is tested in a simulation framework where consumer
load profiles are rescheduled to match ideal flexibility targets.
Comparative analyses show that FD outperforms ED and DTW,
which do not adequately account for the temporal adaptability
of energy consumption. The simulation results demonstrate that
FD more accurately evaluates demand flexibility, yielding closer
alignment with the ideal rescheduling profiles.

Index Terms—Energy analysis, continuous demand response,
demand side management, flexibility distance.

I. INTRODUCTION

Traditional power systems are evolving into smarter, more
efficient, and more sustainable electric networks, aka smart
grids. With digital devices, smart sensors, higher and cheaper
edge computing power, and sophisticated control algorithms,
various smart grid applications are expected to bring nu-
merous benefits to end users and network operators and
enable smooth and cost-effective decarbonisation of energy
systems. As such, governments have made huge investments
in developing enabling technologies, and numerous smart
grid applications have already been developed, e.g., non-
intrusive load modelling (NILM) and continuous demand
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response (CDR), or even deployed on a large scale, e.g., home
energy management systems through grid-interactive efficient
buildings initiatives [1]. At their core, these applications assess
the similarity between two or more time series [2], [3]. As a
result, similarity metrics, especially distance-based methods,
play a critical role in the implementation, performance, and
fairness of these algorithms. This is because the magnitude of
energy usage is critical, whereas correlation-based methods,
e.g., cosine similarity or Pearson correlation, focus on pattern
similarity regardless of absolute magnitude.

In the literature, Euclidean Distance (ED) and Dynamic
Time Warping (DTW) are the two most commonly used
similarity measures for time series comparison in energy
applications [3]–[5]. Several studies have also used other
basic spatial metrics, such as the L1 norm, Manhattan, and
Chebyshev distances, but their performance is often reported
to be comparable to ED [6]. While variants of DTW have
been developed for specific domains [3], [7], their ability to
meaningfully quantify flexibility in energy use remains lim-
ited. ED, for instance, only captures differences in amplitude,
completely ignoring temporal shifts in consumption. DTW
improves on this by allowing elastic alignment of time series,
making it suitable for tasks like load signature detection [8].
However, it treats all temporal shifts uniformly, failing to
distinguish between short- and long-term load rescheduling,
which is an important consideration for energy flexibility
assessment.

Moreover, the concept of flexibility, referring to the ability
to adjust or reschedule energy consumption over time, has
gained increasing attention in the CDR literature [9]–[13].
Flexibility has been defined in various ways: as the amount of
energy that can be increased or decreased within a specified
time window [9], [11], [14], or as a binary indicator reflecting
whether specific consumption adjustments are delivered [12],
[13], often using causality-based methods to assess the con-
tribution of individual appliances. However, these approaches979-8-3315-7640-0/25/$31.00 ©2025 IEEE



typically rely on ED or its conceptual variants, which implic-
itly assume that the effort required to shift a load is the same
across time, which is a simplification that fails to capture the
temporal complexity and behavioural dynamics of real energy
use.

To address these limitations, this paper introduces a novel
similarity measure, termed Flexibility Distance (FD), specif-
ically designed to quantify the time series distance, and
hence flexibility measurement in energy consumption profiles.
FD jointly considers both amplitude variations and temporal
shifts, capturing behaviours such as load increases, decreases,
rescheduling, and sequence reordering. By evaluating the real
effort required to transform one time series into another, FD
offers a more comprehensive and interpretable metric for use
in energy data analytics. Although developed with electricity
consumption in mind, FD is applicable to more general tasks
of range queries and nearest neighbour queries in time series
mining. In summary, the main contributions of this paper are
as follows:

• Proposing the FD measure as a new time series simi-
larity metric that explicitly captures both amplitude and
temporal differences.

• Demonstrating, through a comprehensive simulation
study with multiple scenarios, that FD outperforms tra-
ditional metrics (ED and DTW) in quantifying flexibility
and aligning with ideal rescheduling profiles.

• Illustrating that FD provides a more meaningful basis for
evaluating flexibility in CDR applications, with implica-
tions for improved grid operation and renewable energy
integration.

The remainder of this paper is structured as follows. Sec-
tion II introduces the problem and highlights the limitations of
existing similarity measures. Section III outlines the proposed
methodology, developed in line with the criteria for an ideal
similarity metric, and compares it against ED and DTW.
Section IV presents simulation studies and provides a detailed
analysis of the results. Finally, Section V concludes the paper.

II. PROBLEM DEFINITION

Consider two time series of length m, X = {X1, ...Xm}
and Y = {Y1, ...Ym}. The similarity of the two time series
defined by ED is calculated by accumulating the point value
differences at the same timestamp:

ED(X,Y) =

√√√√ m∑
i=1

(Xi − Yi)2 (1)

On the other hand, DTW finds the minimum warping path
and its associated distance of the two series [15]:

DTW(X,Y) =
√
ΘXm,Ym

, (2)

where Xm and Ym are the mth point in X and Y, ΘXm,Ym
is

the cumulative distance of X and Y from 1 to m. The distance
between ith point in X and jth point in Y can be calculated
as:

ΘXi,Yj
=(Xi−Yj)

2+min{ΘXi−1,Yj−1
,ΘXi−1,Yj

,ΘXi,Yj−1
}. (3)

More specifically, ED only measures the amount of energy
change at each interval, whereas DTW considers two time
series similar if they have similar patterns, even if these
occur at different times. This difference is shown in an
illustrative example in Fig. 1, where we compare two data
sets of EV charging between 1 pm and 10 pm. ED evaluates
electricity usage at identical intervals, ignoring any shifts in
time. However, DTW accounts for temporal shifts by matching
the value at a specific point in series A with the values at the
preceding, same, and subsequent intervals in series B. For
example, the electricity consumption at 3 pm in series A will
be compared with the values at 4 pm in series B, resulting in
a zero difference. However, from a power system engineering
point of view, these two instances in time series A and B are
not identical because it requires a certain amount of effort,
incentive, or compromise in comfort to shift the load to an hour
later. This capability to measure similarity in the presence of
temporal variations, incorporating additional domain-specific
factors, is hereafter termed temporal sensitivity.

Additionally, DTW finds the EV charging at 5 pm in time
series A identical to the values from noon to 6 pm and 7 pm in
time series B, while these two patterns are not similar. In time
series A, 22 kWh is consumed in one hour, whereas in time
series B, we see a shift in EV charging by one hour and an
extension of the charging for the next hour. As a result, these
two patterns show different levels of energy consumption,
starting points, and duration, which makes them dissimilar.
This characteristic to which DTW is insensitive is hereafter
referred to as temporal uniqueness.

Thus, given two energy profiles X and Y, a distance matrix
with elements di,j = (Xi − Yj)

2 contains the point-by-point
distance between Xi and Yj . A route selection matrix with
elements ri,j ∈ {0, 1}, specifies the path to compute the
similarity of X and Y by accumulating a subset of point-
by-point distances in di,j . Hence, an ideal measure that can
compare the electricity profiles and quantify the flexibility,
M(X,Y) =

∑m
i=1

∑m
j=1 ri,j · di,j should meet the following

seven requirements:

1) Non-negativity: M(X,Y) ≥ 0
2) Identity: M(X,Y) = 0, if and only if X = Y
3) Symmetry: M(X,Y) = M(Y,X)
4) Triangle inequality: M(X,Y) ≤ M(X,Z) +M(Z,Y)

for any time series X,Y,Z
5) Temporal uniqueness:

∑m
i=1 rij = 1 ∀ j ∈ {1, . . . ,m}

6) Temporal sensitivity: di,j ̸= 0, if i ̸= j

7) Optimal match: M(X,Y) = min
r∈R

{
m∑
i=1

m∑
j=1

ri,jdi,j}

Upon comparing ED and DTW with the ideal requirements
outlined above, it becomes evident that ED fails to satisfy
Requirements 5 to 7. DTW, on the other hand, does not
meet Requirements 2, 5, and 6, and only partially satisfies
Requirement 3, depending on whether a symmetric step pattern
is used in the route selection matrix [15].

A detailed comparison between the two methods is il-
lustrated in Fig. 2, using two sample time series shown in
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Fig. 1. Distance measurement comparison with ED (top) and DTW (bottom)
for a hypothetical electric vehicle (EV) charging time series A (red) and time
series B (green). The dashed line represents the selected route r to accumulate
the point difference between two time series by ED and DTW

Fig. 1. The distance matrix in Fig. 2 is constructed using
the point-wise squared difference, di,j = (Ai − Bj)

2. The
selected alignment route is represented as a binary matrix,
where ri,j = 1 indicates that element i from series A is
aligned with element j from series B. For visual clarity, the
alignment path is marked using yellow circles for ED and
shaded squares for DTW.

The ED and DTW distance values are then computed
using (1) and (2), respectively. As shown, ED only accounts
for the pairwise differences between the corresponding values
at the same time intervals, that is, along the diagonal of the
distance matrix. In contrast, DTW captures dissimilarities in
temporal patterns by computing an optimal warping path that
minimises the cumulative distance between aligned points.
This allows DTW to recognise “stretched” or “shifted” patterns
as similar by aligning one point in a time series with multiple
points in another.

However, DTW’s flexibility in warping leads to a funda-
mental issue in this application domain: it allows an interval
in series A to be matched with multiple intervals in series
B, which contradicts physical and operational constraints in
energy rescheduling scenarios. As a result, DTW fails to
satisfy Requirement 5, which mandates temporal alignment
constraints that reflect realistic load-shifting behaviour.

III. THE PROPOSED METHODOLOGY

In practice, electricity consumption patterns are influenced
by a variety of behavioural and contextual factors, leading to
shifts, stretches, and rearrangements in temporal usage. For
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Fig. 2. Distance measurement comparison using sample time series A and
B from Fig. 1. The distance matrix with di,j is calculated by pointwise
comparison. The routes indicate the accumulated distance by ED (yellow
circles) and DTW (shaded squares)

instance, an EV might be charged during the day instead
of overnight, cooking may take an hour longer than usual,
or television may be watched before dinner instead of after.
These temporal variations must be taken into account in any
similarity measure, as they directly affect consumer welfare,
an aspect captured in Requirement 6, which is not satisfied by
ED or DTW.

Moreover, transforming one usage pattern into another
typically allows multiple matching paths with varying as-
sociated costs. To achieve optimal matching, the solution
with the minimum total cost should be selected, as described
in Requirement 7. This criterion is unmet by the ED and
is only partially addressed by the DTW, which identifies a
minimum-cost path, but does so through a constrained warping
mechanism.

To address these limitations, we introduce a new distance
metric, termed Flexibility Distance (FD), designed to more
effectively quantify the similarity between the electricity usage
profiles. FD operates in two phases. The first phase constructs
a cost matrix that simultaneously accounts for both amplitude
and temporal misalignment. Each element Di,j in this matrix
represents the effort required to reshape a consumption value
Xi into Yj , incorporating both the magnitude and the timing
of the adjustment.

Di,j = |Xi − Yj | · Pi,j + |i− j| · Ti,j (4)

where Pi,j and Ti,j are the amplitude and temporal weights,
respectively. For illustration purposes, we use a constant
number 1, as the amplitude weight, and a max-min scaler of Xi

as the temporal weight to make the amplitude and temporal
effects similar for simplicity. Hence, Di,j can be calculated



using (5). In real-world applications, different weights can be
set according to the needs.

Di,j= |Xi − Yj |+|i− j|·max(X,Y )−min(X,Y )

m
(5)

To represent the possible route that fulfils temporal unique-
ness of requirement 5, we define ri,j as binary matrix ele-
ments, where each row and column have only one non-zero
element, i.e., a route selection matrix, subject to:

ri,j ∈ {0, 1} ∀ i, j ∈ {1, 2, . . . ,m} (6a)
m∑
j=1

ri,j = 1 ∀ i ∈ {1, 2, . . . ,m} (6b)

m∑
i=1

ri,j = 1 ∀ j ∈ {1, 2, . . . ,m} (6c)

In the second phase, we select the optimal route to fulfil
Requirement 7. The FD metric can then be calculated as
follows:

FD(X,Y) = min
ri,j

{
m∑
i=1

m∑
j=1

ri,j ·Di,j} (7)

The main idea in the proposed distance measure is to see
how one time series can be reshaped into another time series at
a minimum cost. In contrast to the pointwise distance matrix of
ED and DTW shown in Fig. 2, our proposed method considers
the cost of both the amplitude and temporal changes in the first
phase, i.e., (4) and (5). For example, if we move the load
consumption from time i in the first time series to a different
time j in the other time series, the ED and DTW cannot
distinguish the difference, that is, D3,4 = 0 when X3 = Y4 and
3 ̸= 4. However, the FD metric can distinguish this difference,
as shown in Fig. 3. The second phase aims to minimise the
cost of reshaping the time series X into Y by (7), which is a
linear sum assignment problem (LSAP). The LSAP problem
can be solved by the Kuhn-Munkres Hungarian Algorithm
with O(n3) time and O(n2) space [16]. This process involves
considering all possibilities and combinations in increment,
decrease, shift, and temporal sequence exchange.

Table I summarises the capability of ED, DTW and FD
to meet the requirements listed in Section III. It is important
to note that, under certain circumstances, if one of the two
time series is flat, i.e., Xi = c in (4), the cost of reshaping
using FD will be equivalent to the sum of diagonal elements
in the distance matrix. This is similar to ED but with a
different magnitude, as the minimum cost is achieved when
i = j ∀ i, j ∈ {1, 2, . . . ,m} in (7).

Furthermore, an important by-product of the proposed dis-
tance metric is that it finds the shortest path in Fig. 3, which
provides an optimal solution to reshaping time series X into
time series Y. Hence, FD as a metric provides a quantitative
distance that presents both the cost of reshaping the electricity
time series and the strategy for optimal reshaping. To this end,
FD could be used in many smart grid applications, e.g., to
design better home energy management systems and demand
response programs.
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Fig. 3. Distance measurement comparison using two time series A and
B from Fig. 1. The proposed distance measure (shaded squares) with an
improved distance matrix with elements Ci,j calculated using (5)

TABLE I
FEATURE COMPARISON OF DIFFERENT

DISTANCE MEASURES

Requirements ED DTW FD

Non-negativity ✓ ✓ ✓

Identity ✓ ✕ ✓

Symmetry ✓ ✗ ✓

Triangle inequality ✓ ✕ ✓

Temporal uniqueness ✓ ✕ ✓

Temporal sensitivity ✕ ✕ ✓

Minimum cost ✕ ✗ ✓

✓: accomplished requirements, ✕: un-
fulfilled requirements, ✗: requirements
partially fulfilled.

IV. SIMULATION RESULTS

To further evaluate the effectiveness of the proposed method
against ED and DTW, we conducted a simulation study to
compare different similarity measures in a CDR program using
real-world data from a residential consumer with a rooftop PV
system in Sydney, Australia, obtained from the SolarHome
dataset [17]. A specific day, i.e. 28 May 2013, was selected
for analysis [17], during which both solar generation and the
evening peak demand were significant, as illustrated in Fig. 4.
The objective in this scenario is to reshape the original load
profile (green curve) into an ideal load profile (red curve) that
minimises the electricity bill by shifting consumption from
the peak evening hour at 7:30 pm to the off peak noon period,
when solar generation is abundant.

To demonstrate the utility of FD in quantifying actual
flexibility, particularly in cases where the realised profile only
partially follows the ideal, we generated five hypothetical
rescheduling scenarios (labelled #1–5), each involving load
shifts at different time intervals, as shown in Fig. 5. The
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Fig. 5. The proposed load rescheduling in each scenario (solid red line) in
comparison with the original load profile (solid blue line) with the difference
(pink shaded region).

amount of shifted load in each scenario corresponds to the
available solar generation, as depicted in Fig. 4. Notably,
Scenario #1 represents a special case where the peak load is
shifted from morning to noon. While this aligns with solar
availability, it does not contribute to reducing the evening
peak and, in fact, introduces a new morning peak, one that
is temporally distant from the intended evening shift.

To quantify the effectiveness of each scenario in approxi-
mating the ideal profile, we calculated the distance between
each scenario and the ideal load profile using the three similar-
ity metrics: ED, DTW, and the proposed FD. The results are
summarised in Table II, with FD values scaled for comparison.
The first row shows the distance between the original load
profile O and the ideal profile E, denoted as M(O,E), which
represents the baseline effort required to fully reschedule the
original load. Lower positive distances for a given scenario
indicate a closer alignment with the ideal profile and thus a
more effective rescheduling outcome.

It can be seen in Table II that the distances measured by
ED are identical in all scenarios, except for Scenario #4,
which partially overlaps with the ideal profile. This highlights
ED’s inability to capture temporal dynamics, as it lacks the

TABLE II
DISTANCE VALUES FOR ALL SCENARIOS OBTAINED BY ED, DTW, AND

FD (BRIGHTER BLUE INDICATES A SMALLER DISTANCE VALUE FOR EACH
COLUMN)

Distance ED DTW FD

M(O,E) 1.45 1.17 1.44

M(S1,E) 1.45 1.07 1.44

M(S2,E) 1.45 0.82 0.46

M(S3,E) 1.45 1.16 0.96

M(S4,E) 1.04 0.78 0.62

M(S5,E) 1.45 0.89 0.93

sensitivity required to distinguish load shifts that align with
the intended direction of the ideal profile. In contrast, DTW
produces different distances for each scenario. However, in
Scenario #1, the DTW value contradicts domain knowledge,
as discussed in Section II.

In Scenario #3, both ED and DTW do not reflect the
effectiveness of the rescheduling. Distances M(O,E) and
M(S3,E) are nearly identical for these metrics, even though
Scenario #3 involves shifting a substantial portion of the
evening peak load to noon. This adjustment more closely
resembles the ideal load profile and therefore should be
evaluated more favourably.

Scenario #2 emerges as the second-best option after the
ideal profile, as it shifts the second-largest peak load to
noon and results in a simplified single-peak structure. From
both a pattern-matching and load-rescheduling perspective,
this scenario is similar to the ideal profile. While FD correctly
identifies Scenario #2 as the next most effective rescheduling
option, ED and DTW fail to capture this relationship.

This example demonstrates that, overall, FD provides the
most interpretable and meaningful results when evaluating
flexibility in load profiles, particularly in the context of time-
aware rescheduling decisions.

V. CONCLUSION AND FUTURE WORKS

This paper proposed a novel distance metric, termed Flexi-
bility Distance (FD), designed to quantify the effort required to
reshape one time series into another. FD is particularly suitable
for time series analysis involving dynamic user behaviour,
such as electricity consumption data. Unlike traditional mea-
sures such as ED and DTW, the proposed FD metric jointly
considers pointwise changes, temporal shifts, and sequence
reordering. This comprehensive consideration is especially
critical in the context of indirect control in CDR, where the
delivery of flexibility is not a binary outcome (i.e., fully
delivered or not delivered at all). FD thus enables a more
accurate quantification of how closely a realised consumption
profile aligns with a targeted profile.

Moreover, given that the widely used mean squared error
can be interpreted as a normalised form of the sum of
squared ED values, FD may serve as a refined loss or error
function in machine learning-based smart grid applications. By
incorporating both amplitude and temporal differences, FD can



guide learning algorithms more effectively, potentially leading
to improved application performance, such as enhanced energy
efficiency, reduced renewable energy curtailment, and greater
customer satisfaction.

Future work will focus on extending the application of
FD to a broader range of smart grid tasks, including load
clustering, behind-the-meter (BTM) equipment identification,
anomaly detection, load disaggregation, and data compression.
In addition, our goal is to develop methods for generating
temporal weights that reflect user preferences or operational
priorities. Finally, FD will be integrated into advanced learning
frameworks such as contrastive learning and motif discovery,
and evaluated using large-scale, high-resolution datasets. A
comparative performance analysis with ED-based loss func-
tions will also be performed.
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