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Abstract--In this study, we used PSO algorithm and ANN to 

predict annual electricity consumption in Iranian agriculture 
sector. The economic indicators used in this paper are price, 
value added, number of customers and consumption in the 
previous periods. To predict the future values, a linear-
logarithmic model of electrical energy demand is considered. The 
PSO algorithm applied in this study has been tuned for all its 
parameters and the best coefficients with minimum error are 
identified, while all parameter values are tested concurrently. 
Consumption in the previous periods has been used for testing 
estimated model. The estimation errors of PSO algorithm are less 
than that of estimated by genetic algorithm and regression 
method. In addition, ANN is used to forecast each independent 
variable and then electricity consumption is forecasted up to year 
2010. Electricity consumption in Iranian agriculture sector from 
1981 to 2005 is considered as the case for this study. 
 

Index Terms—Artificial Neural Networks, Electricity demand, 
Linear-logarithmic model, Prediction, PSO algorithm. 

I.  INTRODUCTION 
ue to essential needs to synchronize electricity production 
and consumption, technological constraints for storing 
electricity in large scales, and optimal operation and 

planning in power systems, it is vital to predict and estimate 
electricity demand in different time scales. Predicting demand 
provides the operators needed information about future 
conditions of the network. This information provides 
possibility to predict essential improving actions such as 
putting power plants in their maximum production, electricity 
purchasing, switching and etc to operate the power system in 
safe conditions. On the other hand, accurate prediction of 
demand causes to decrease costs and improve power system 
safety, making it possible for utilities to produce, purchase and 
sell energy in optimal prices. Also, an accurate demand 
prediction model is a vital part of energy management systems 
for Appling different tariffs in different time ranges. 
 Demand prediction depends on time ranges and their 
applications, divided in to four categories: very-short-term, 
short-term, mid-term and long-term. Where the forecasting 
period is a few minutes this is referred to as very-short-term 
(VSTLF), if the time spanned ranges from a few hours up to 1 
week then this is covered by the most widely available models 
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called short-term (STLF), STLF calculates the load of every 
hour of the day and this estimate can be used to control the 
number of generators in use and the shutdown of some units 
when the load forecast is low or their start-up when high loads 
are foreseen. In the case in which the time period lasts from a 
few weeks up to 1 year then we are dealing with mid-term 
(MTLF). Lastly, if the activity forecast spans a period from a 
few years up to one or two decades then these are long-term 
(LTLF) and they are generally used to aid resource planning 
activities and to assess the need for restructuring or extension 
of production facilities, determination of electricity 
production, transmission and distribution capacity, types of 
equipments and planning for production and transmission 
development and make maintenance schedules. In this study, 
long-term load forecasting is considered for Iranian agriculture 
sector (LTLF). 
 The estimation of electrical energy demand based on 
economic indicators may be done with different kinds of 
mathematical models. These equations might be linear or non-
linear. Due to the fluctuations of economic indicators, the non-
linear forms of the equations can predict electrical energy 
demand more effectively. The non-linearity of economical 
indicators and electrical energy demand has lead to search for 
different solution approach methods of evolutionary 
algorithms. Particle Swarm Optimization (PSO) algorithm is a 
form of evolutionary computation technique developed by 
Kennedy and Eberhart [13-15]. PSO algorithms are optimizing 
and stochastic search techniques which possess vast and 
powerful applications. PSO algorithm has not been used for 
optimizing parametric values of predictor equations. Almost 
all works in this area has been performed using genetic 
algorithm. The estimation of Turkey’s energy demand based 
on economic indicators using genetic algorithm was reported 
by Ceylan and co-workers in 2003 [1]. Hepbasli estimated 
industrial electricity demand using genetic algorithm [2]. 
Osman et al. presented a combined GA – fuzzy logic 
controller technique for constrained nonlinear programming 
problems so that the search region is able to adapt toward the 
promising area [3]. Tang, Quek and Ng have used a genetic 
algorithm based Takagi–Sugeno–Kang fuzzy neural network 
to tune the parameters in Takagi–Sugeno–Kang fuzzy neural 
network [4]. Muni et al. proposed genetic programming 
methodology simultaneously selects a good subset of features 
and constructs a classifier using the selected features [5]. 
Some researches have been carried out recently to estimate the 
energy consumption using genetic algorithm [6,7]. Azadeh et 
al. proposed an integration of ANN and GA to predict 
electricity demand in Iranian agriculture sector. They used GA 
to optimize predictor equation parametric values and ANN to 
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forecast each of independent economic indicators [8]. As we 
had access to the data used in [8], we adopted Iranian 
agriculture sector as a case study to compare our results with 
results in [8].  
 The economic indicators used in this paper are price, value 
added, number of customers and consumption in the previous 
periods. First three economic indicators have been used as 
variables in model. These parameters are selected because 
they have great effects on electricity demand fluctuations in 
this sector. This model can be used to predict electricity 
demand in the future by optimizing parameter values. The rate 
of changes in these parameters from 1981 to 2005 is similar 
with that in the electricity consumption trend. 
 To predict the future values, a linear-logarithmic model of 
electrical energy demand is considered. The PSO algorithm 
applied in this study has been tuned for all its parameters and 
the best coefficients with minimum error are identified, while 
all parameter values are tested concurrently. Consumption in 
the previous periods has been used for testing estimated 
model. In addition, ANN is used to forecast each independent 
variable and then electricity consumption is forecasted up to 
year 2010. We used electricity consumption in Iranian 
agriculture sector from 1981 up to 2005 to find fine-tuned 
model and test its performance in prediction. Besides, values 
for each independent variable includes price, value added, and 
number of customers from 1981 up to 2005 are available. The 
latest data is used for prediction each of independent variable. 
Fig. 1, shows electricity consumption for Iranian agriculture 
sector from 1981 up to 2005 [17]. 
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Fig. 1.  Electricity consumption for Iranian agriculture sector from 1981 to 
2005. 
 

II.  PARTICLE SWARM OPTIMIZATION ALGORITHM 
The last three decades have witnessed the development in 

efficient and effective stochastic optimizations. In contrast to 
the traditional adaptive stochastic search algorithms, 
evolutionary computation (EC) techniques exploit a set of 
potential solutions, named a population, and detect the optimal 
solution through cooperation and competition among the 
individuals of the population. These techniques often detect 
optima in difficult optimization problems faster than 
traditional methods [11]. One of the most powerful swarm 

intelligence-based optimization techniques, named Particle 
Swarm Optimization (PSO), was introduced by Kennedy and 
Eberhart [9, 10]. PSO is inspired from the swarming behavior 
of animals, and human social behavior. During last decade 
many studies focused on this method and almost all of them, 
strongly confirmed the abilities of this newly proposed 
optimization technique [9-14]. Abilities such as fast 
convergence, finding global optimum in presence of many 
local optima, simple programming and adaptability with 
constrained problems. Beside, some papers worked on 
improving this method by means of imposing additional 
variations such as variable inertia coefficient, constriction 
factor [12], maximum velocity limit, parallel optimization 
[13], deflection, repulsion, stretching [11], mutation [14] and 
so on. 

PSO is a population-based algorithm that exploits a 
population of individuals to probe promising region of the 
search space. In this context, the population is called swarm 
and the individuals are called particles. Each particle moves 
with an adaptable velocity within the search space and retains 
in its memory the best position it ever encountered. The global 
variant of PSO the best position ever attained by all 
individuals of the swarm is communicated to all the particles 
[11]. The general principles for the PSO algorithm are stated 
as follows: 

Suppose that the search space is n-dimensional, then the 
thi particle can be represented by an n-dimensional vector, and 

velocity [ ]iniii vvvV ,...,, 21= , where Ni ,...,2,1= and N is the 
size of population. 

In PSO, particle i  remembers the best position it visited so 
far, referred to as [ ]Tiniii pppP ,...,, 21= , and the best position 
of the best particle in the swarm is referred as 

[ ]TngggG ,...,, 21= [15]. 
Each particle i adjusts its position in next iteration t+1 with 

respect to Eqs. (1) and (2) [11]:  
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 Each variables of Eq. (1) is described as follows: 

A.  Parameter selection 
 There are several guidelines about the selection of the key 
parameters in PSO as available from the literature [9-14].  

B.  The number of particles 
 The typical range for the number of particles is 20–40. For 
most of the problems, 10 particles are large enough to get 
good results. For some difficult or special problems, 100–200 
particles can be tried as well. In this work, a particle size of 60 
is chosen which gives results close to the optimal. 

C.  Range of the particles 
 The range of the particles depends on the problem to be 
optimized. One can specify different ranges for different 
dimension of the particles. In this work, the range is depended 
on the problem and change between -5 to 5 time ranges. 
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D.  Maximum velocity vmax 
 The maximum velocity vmax determines the maximum 
change one particle can take during one iteration. Usually, the 
range of the particle is set as vmax. In this work, a vmax 

( )VariablesDecisionofNumber×= 4  is chosen for each 
particle as this gives better optimal results. 

E.  The inertia parameter 
 The inertia parameter is introduced by Shi and Eberhart [16] 
and provides improved performance in a number of 
applications. It has control over the impact of the previous 
history of velocities on current velocity and influences the 
balance between global and local exploration abilities of the 
particles. A larger inertia weight favors a global optimization 
and a smaller inertia weight favors a local optimization. 
 In Ref. [16], it is suggested to range ( )tω  in a decreasing 
way from 1.4 to 0 adaptively. In this work, inertia parameter 
modify linearly from 1 to 0.05 as it facilitates reaching a better 
optimal value in lesser number of iterations. 

The inertia coefficient in Eq. (1) is employed to manipulate 
the impact of the previous history of velocities on the current 
velocity. Therefore, ( )tω  resolves the trade off between the 
global and local exploration ability of the swarm. A large 
inertia coefficient encourages global exploration while small 
one promotes local exploration. Experimental results suggest 
that it is preferable to initialize it to a large value, giving 
priority to global exploration of search space, and gradually 
decreasing as to obtain refined solution [11]. 

F.  The parameters c1 and c2 
 The acceleration constants c1 and c2 indicate the stochastic 
acceleration terms which pull each particle towards the best 
position attained by the particle or the best position attained by 
the swarm. Low values of c1 and c2 allow the particles to 
wander far away from the optimum regions before being 
tugged back, while the high values pull the particles toward 
the optimum or make the particles to pass through the 
optimum abruptly. In Ref. [9], the constants c1 and c2 are 
chosen equal to 2 corresponding to the optimal value for the 
problem studied. In the same reference, it is mentioned that 
the choice of these constants is problem dependent. In this 
work, c1 = 2 and c2 = 2 are chosen which give better optimal 
results in lesser iterations. 

G.  The stop condition 
 The stopping criterion can be adopted as the number of 
iterations the PSO algorithm execute and the minimum error 
requirement. In this work, after about 200 iterations the 
improvement in the objective function is not significant and 
this value is taken as the maximum number of iterations the 
algorithm can execute. 
 With this algorithm, we can find best values of predictor 
model coefficients as described in section III. 

III.  LINEAR-LOGARITHMIC MODEL 
As mentioned before, in this study a linear–logarithmic 

model of electrical energy demand is considered in the 
agricultural sector as different kind of mathematical equations 

can be estimated by PSO algorithm. Eq. (3) presents the 
linear–logarithmic model: 

)3(ln.ln.ln. 332211 xaxaxaay +++=
where x1, x2 and x3 are price, value added and number of 
customers respectively and y is the electricity consumption for 
the next year. ao, …, a4 are the Linear-Logarithmic Model 
coefficients that must be tuned with PSO algorithm. The usual 
way of estimating model parameters is to use data partially; 
with values of all dependant and independent variables 
(includes price, value added, number of customers and 
electricity consumption in this sector) from 1981 to 2005, one 
series (at least 20 years) is to estimate the parameters and 
saving the reminders for testing purpose. The testing 
procedure is to obtain minimum relative error between 
estimated and actual values. 

To introduce fitness function for PSO algorithm, the 
variables should be put in the model and then the difference 
between estimated values and actual data for each individual 
should be calculated. This function is named Mean Absolute 
Percentage Error (MAPE) and is commonly used in PSO 
algorithm applications. In each generation the particles with 
minimum difference must be returned. The fitness function is 
shown below: 

( )∑
=

−=
n

j
actualestimatedactual DDDnf

1
)4(//1min

where Dactual and Destimated are actual and estimated energy 
demand, respectively and n is the number of observations. 

Twenty years data was used to estimate the model 
parameters and five years data is also saved for testing 
purpose. The required parameters on PSO algorithm are as 
follows: 

• Population size (n): 60 
• Iterations (number of the generation): 200 
• Inertia coefficient (ω(t)): change linearly from 1 to 0.05 
After applying PSO on Eq. (3) the resulted model is as 

follows: 
)5(ln.6402.0ln.8115.0ln.0616.01251.0 321 xxxy ++−=

 In [8], Twenty-one years data was used to estimate the 
model parameters and five years data is also saved for testing 
purpose. To identify the best fitness, the required parameters 
on GA algorithm are as follows in [8]: 

• Population size (n): 90 
• Iterations (number of the generation): 200 
• Mutation rate: 0.03 
• Crossover rate: 84% 

 The obtained average relative error for the GA and 
regression model in [8] is 3.75% and 15.12%, respectively. 
Fig. 2 depicts the convergence of PSO in 5 runs. Almost in all 
runs PSO converges to same optimum point. In contrast, 
gradient descent method is very sensitive to initial points. This 
fact may conduct Gradient Descent to a local optimum point 
too far from global optimum point. On the other hand, due to 
stochastically inherence of PSO, this method has the capability 
of avoiding from getting into local minima. PSO owes this 
capability to random coefficients 1r and 2r stated in Eq. (5). 
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Fig. 2.  PSO convergence through 5 runs. 
 
 The relative error between estimated and actual values with 
PSO algorithm is reported in Table I. 
 

TABLE I 
THE RELATIVE ERROR BETWEEN ESTIMATED DATA FROM PSO ALGORITHM 

AND ACTUAL DATA. 
Year Actual Data PSO Algorithm 

  Estimated Relative Error (%) 
2001 11079 11349 2.44 
2002 12435 12492 0.46 
2003 13859 13997 1.00 
2004 14526 14645 0.82 
2005 14823 15126 2.05 

Average Relative Error (%)  1.35 
 
 Fig. 3, shows electricity consumption for Iranian agriculture 
sector from 1981 up to 2005 in comparison with estimated 
data using linear-logarithmic model optimized with PSO. 

As we can see, the average relative error for proposed 
method in this study is less than others. Furthermore, table I 
and Fig. 3. show the great performance of PSO algorithm for 
tuning of model parameters and electricity consumption 
prediction precisely. 
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Fig. 3.  Comparison between real electricity consumption in this sector and 
estimated with linear-logarithmic model that optimized with PSO.  

 

IV.  ARTIFICIAL NEURAL NETWORKS 
 The MLP neural network consists of simple processing 
elements (artificial neurons) arranged in layers: an input layer 
receiving the input variables, one or more hidden layers 
performing the required non linear input–output mappings, 
and an output layer producing the network outputs. Each 
neuron receives weighted inputs from all neurons in the 
preceding layer. Let Wij be the weight associated with the link 
from neuron i in one layer to neuron j in the next downstream 
layer.   

The neuron sums all weighted inputs and, with reference to 
a threshold value, uses a non-linear activation function to 
determine its output. The modeling problem is solved by 
training on a set of solved examples in the form of input–
output records. Training attempts to minimize the error 
between known and calculated network outputs over all 
training examples through optimizing the network weights. 
The mean square error (MSE) criterion is given by:  

)6(
2
1 2












−= ∑∑

p p
kpkp OtE

where tkp and Okp are the true and observed outputs, 
respectively, for neuron k in the output layer when input 
vector xp corresponding to the pth training record is applied to 
the network. Training with the back propagation algorithm 
involves iterative application of the training records, 
determining observed output errors for neurons in the output 
layer, back propagating these errors to all previous layers, and 
adjusting the weights so as to minimize the error criterion. The 
output from neuron j in a given layer (other than the input 
layer) is calculated as: 

)7(. 







= ∑

i
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where i indicates a neuron in the preceding layer and f is the 
activation function for neuron j. The activation function is 
often a sigmoid function of the form: 

( ) )8(
1

1
xe

xf −+
=  

 With the gradient descent approach to error minimization, 
weights are changed in proportion to the error gradient, i.e. 

)9(
ij

ij W
EW

∂
∂−=∆ η

where η is a constant that determines the learning rate. To 
improve convergence characteristics, weight changes are also 
related to changes introduced in the previous iteration. At the 
nth iteration, the change in Wij for the link from neuron i to 
neuron j is given by [19]: 

( ) ( ) )10(1−∆+=∆ nWOnW ijijij αεδ
where ε is the learning rate, α is the momentum factor, and δj 
is the error signal for the destination neuron j. When neuron j 
is in the output layer, δj is given by: 

( ) ( ) )11(1.. jjjjj OOOt −−=δ  
When neuron j is in a hidden layer, δj is given by: 

( )∑−=
k

jkkjji WOO )12(.1. δδ  

where k indicates neurons in the succeeding layer next to that 
containing neuron j. 
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 The learning rate and the momentum factor influence the 
speed and stability of network training. The process continues 
until the error criterion on the training set is reduced below a 
specified limit. To improve generalization on new out-of-
sample data, early stopping criteria are often employed where 
a separate test data set is used to validate the resulting model 
and training is stopped when error on that data set starts to 
increase indicating the start of overfitting. 
 In this paper, we used ANN for prediction of each 
independent variable. After that, we use estimated values for 
prediction of annual electricity consumption using (5). 
According to the fact that the available data are yearly, yt-1, yt-2 
and yt-3 are sufficient to justify yt where yt is the amount of 
consumption in tth year. As the available data are for 25 years, 
totally 22 rows of data are developed according to this 
structure. For each independent variable, an ANN is 
constructed with similar topology to predict each of them up 
to year 2010. Table II shows the Mean Absolute Percentage 
Errors (MAPE) of prediction of each independent variable. 
Sensitivity analysis was done to find best ANN architecture. 
Different architecture of ANN with different number of layers 
and neurons in each layer is applied to find best architecture of 
ANN is calculated. The best architecture was a network with 3 
layer perceptrons; 2 neurons in input layer, 3 neurons in 
hidden layer and 1 neuron in output layer.  
 This network is used for all three independent parameters 
that are needed for prediction of electricity demand up to year 
2010.  

TABLE II 
THE MAPE ERROR FOR EACH INDEPENDENT VARIABLE CALCULATED OF ANN 

TEST. 

Variables Price No of 
customers Value added 

MAPE error (%) 0.135 0.011 0.192 
 

V.  RESULTS 
 PSO algorithm is applied in section III on linear-logarithmic 
model and the best coefficients are obtained. Eq. (5) shows the 
final model that is used for prediction of electricity 
consumption up to year 2010.  
 On the other hand, as mentioned above, forecasting 
electricity demand by linear-logarithmic model optimized by 
PSO, needs to forecast the three independent variables 
separately. In this paper, it is done by ANN. All methodology 
is described in section IV and the results of each variable 
prediction up to year 2010 are reported in table III. Then we 
can use these values for prediction of electricity demand using 
(5). 
 

TABLE III 
PREDICTED VALUES OF PRICE, NUMBER OF CUSTOMERS AND VALUE ADDED 

UP TO YEAR 2010. 

Prediction Price (¢/kWh) No of 
customers Value added 

2006 5.86 7971 112.5 
2007 5.70 7805 119.6 
2008 5.63 7486 127.1 
2009 5.42 7362 130.7 
2010 5.20 7154 139.5 

 With independent variables prediction values and using (5), 
the table IV shows the prediction of electricity consumption in 
Iranian agricultural sector up to year 2010.  
 

TABLE IV 
PREDICTION OF ELECTRICITY CONSUMPTION FOR IRANIAN AGRICULTURAL 

SECTOR UP TO YEAR 2010. 
Years 2006 2007 2008 2009 2010 

Prediction 
(106*kWh) 15685 15912 16410 16783 17102 
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Fig. 4.  Comparison between real electricity consumption in this sector and 
estimated with linear-logarithmic model that optimized with PSO.  
 
 Fig. 4. depicts forecasted values for electricity consumption 
in Iranian agriculture sector up to year 2010.  

VI.  CONCLUSION 
In this study, a linear-logarithmic model for prediction of 

electricity consumption in Iranian agricultural sector up to 
year 2010 is applied. For tuning its coefficients, PSO 
algorithm is considered. In this case, the data of electricity 
consumption in this sector from 1981 to 2005 is used for 
optimizing linear-logarithmic model coefficients and test 
optimized model to prove its prediction ability. The results are 
compared with those presented in [8] as a similar case. The 
linear-logarithmic model includes three independent variables 
which have greatest effects on electricity consumption in this 
sector. 

To prediction of demand in this sector, ANN is applied to 
predict each of these variables. Finally, electricity 
consumption up to year 2010 is calculated with optimized 
model. 

Results show that PSO algorithm is much better than GA 
and regression method used in [8] for a similar case. This 
approach can be applied to other prediction problems.  
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