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A hybrid deep learning model for daily electricity demand prediction is proposed.

A Kernel Density Estimation is applied to derive probabilistic prediction intervals.

The algorithm quantifies uncertainties in point-based electricity demand predictions.

The proposed model outperforms deep learning models using statistical uncertainty indi-
cators.
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Abstract

Implementing key engineering solutions to optimise the operation of energy industries requires
daily electricity demand forecasting and including uncertainty, to promote markets insight anal-
ysis as part of their strategic planning, regulating and supplying electricity to consumers. This
paper proposes hybrid artificial intelligence models combining convolutional neural networks
(CNN) as a feature extraction algorithm with extreme learning machines (ELM) as a framework
to predict electricity demand with confidence intervals generated by Kernel Density Estimation
(KDE) approaches. In order to develop CELM-KDE model, time-lagged series of daily elec-
tricity demand with local climate variables based on the air temperature, atmospheric vapour
pressure, evaporation, solar radiation, humidity and sea level pressures are used to train the
proposed CELM-KDE hybrid model. In order to fully evaluate the newly developed model
from a point-based, as well as a probabilistic prediction strategy, the observed and predicted
electricity demand as well as the probability distribution of errors are analysed using KDE
method that operates without prior data distribution assumptions. Based on observed and
predicted electricity demand and the relevant probabilistic confidence intervals generated by
the CELM-KDE model, the final results show that the proposed method attains significantly
better probability interval predictions than traditionally-used point-based models. The pro-
posed CELM-KDE model is demonstrated to be highly effective in providing a comprehensive
coverage of predicted errors, as well as providing greater insights into the average bandwidth
and detailed predicted electricity demand in the testing stage. The results also indicate that
the proposed hybrid model is a reliable decision support tool to develop engineering solutions
in area of energy modelling, monitoring and forecasting, which could potentially be useful to
the industry policymakers. We show that the point-and probabilistic-based electricity demand
predictive models can be employed as an effective tool to improve accuracy of forecasting and
provision of insights for national electricity markets and key energy industry stakeholder appli-
cation tools.
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1. Introduction

Electricity power system operators, utilities, and private investors alike have a strong interest
in short-term accurate electricity demand forecasting which enables grid operation, bidding in
the wholesale market, and planning maintenance [I]. Forecasts that are inaccurate or are
over-predict electricity demand, as well as those that under-predict it, may cause blackouts
and loss of loads in extreme cases. Predicting electricity demand (G) is therefore crucial for
government officials, power producers, and distributors [2]. Because of the operational, tactical,
and strategic consequences of G prediction, accurate demand prediction became even more
crucial for electricity suppliers. The short-and medium-term effects are increased operating
costs, management difficulties, security and stability issues [3], and a lack of sustainability in
the power supply system [4, [5, [6]. Similarly, the long-term effects include a loss of market
share and weakened competitiveness in the energy market [7]. This is because extra costs
of installing, connecting, and maintaining distributed energy resources (DERSs), such as solar
panels and wind turbines, are significant, and the lack of stability and power security makes
it difficult to manage the power supply systems efficiently. Additionally, when market share
is lost, companies become less competitive in the energy market, leading to decreased profits.
Therefore reliable predictive models for electricity demand are crucial to the successful operation
of national electricity markets and profitability of the energy sector.

In general, there are three main methods for predicting the G: (i) econometrics and statisti-
cal techniques; (ii) traditional artificial intelligence (Al); and (iii) hybrid AI models, which incor-
porate models from econometrics, statistics and Al fields [§]. In the first category, well-known
methods for modelling G include Generalized AutoRegressive Conditional Heteroskedasticity
(GARCH) and Autoregressive Integrated Moving Average (ARIMA) models [9, [10, 11]. Re-
garding traditional AI techniques, there are several types of machine learning (ML) frameworks
devoted to this prediction problem, such as Artificial Neural Networks (ANN) [12] 13, 14, [15],
Support Vector Regression (SVR) [16], [17, 18| 11, T9] and Decision Trees (DT) models [20] have
been extensively adopted for related problems. Alternative to ML frameworks, recent advance-
ments in deep learning (DL), an advanced form of ML developed to deliberately explore and
model complex datasets, have found good applications in the G prediction problem. These DL
models are therefore revealing promising results in respect to their capabilities and robustness
to predict G [21), 22 23]. Finally, hybrid approaches mixing different types of ML/DL and
alternative approaches have shown excellent performance in the prediction of G. Through the
integration of different algorithms, hybrid models can be created to capitalize on each algo-
rithm’s merits to improve the overall predictive performance. In the case of G time-series,
spatial (station-based) as well as temporal information must be considered in order to obtain
accurate results [24], 25].

In addition to the problem of predicting the spatially and temporally diverse, as well as
chaotic G data series described above, a major limitation of existing studies pertains to the large
focus on single 'point-based’ electricity demand predictions, rather than the probability and
confidence interval of such predictions, which is now required for day-to-day management. The
past studies reviewed to date have yielded deterministic predictions without much information,
if any, on the probability interval over which a predicted G value would lie, the spread of such
predictions, and the level of uncertainty in the predicted value [26]. Due to the stochastic
nature of G' data time-series, point-based predictions become more uncertain and erratic as
the level of G' uncertainty increases, and this limitation of existing electricity demand models
could become a critical challenge in managing and planning electricity supply. It is essential



to quantify these uncertainties in a probabilistic manner in order to reduce uncertainties in
G estimations or at least better understand their sources or nature. As an alternative to
point-based forecasting, the overall prediction interval (PI) presented in this paper could yield
valuable insights regarding the likelihood of uncertainty in point predictions [27]. In general,
the evaluation of Pls could consist of calculating the lower and the upper bounds of errors of
predicted G and represented as a pre-determined probability, let’s say (1 — «)% denoted as
the confidence level |28 29]. As compared to only a point-based value, the PI associated with
any predicted G is significantly beneficial to decision-makers in the energy industry. This is
attributable to the fact that it not only provides a range within which a predicted electricity
demand is likely to fall but also provides an a% value representing a probability of its precision,
which is often referred to as the confidence level.

In this study, we propose a hybrid approach formed by a CNN as a feature extraction tool,
and an Extreme Learning Machine (ELM) prediction model to explore the historical patterns
in G as well as climate datasets. The final hybrid approach is known as CELM model for
daily prediction of point-based G data. We will then integrate the KDE approach to evaluate
prediction errors in G, in order to quantify the likely uncertainties in point-based electricity
demand predictions. The approach in this paper is also informed by an earlier study of Yu
et al. [30] whereby a KDE-based model was developed with a fixed bandwidth to evaluate
the distribution of wind power prediction errors although no prior study has integrated the
KDE method with deep learning models for electricity demand prediction. A KDE approach,
however, was utilised with the volatility forecast model in a study by Trapero et al. [31] where
the results showed improved efficacy of their solar irradiation forecast model with relevant
prediction intervals. The study of Zhou et al. [32] has adopted an LSTM network with the KDE
model to compute wind power using a probabilistic interval prediction method. In addition, this
paper also provides explainability of the proposed hybrid CELM-KDE model by adopting the
SHapley Additive exPlanations (SHAP) [33] approach, aiming to provide model interpretability
in respect to which of the features from the climate variables as well as the lagged demand data
could be considered as the influential contributor towards the prediction. Finally, we offer a
practical application of the proposed CELM-KDE model for the first time to generate prediction
intervals over which reliable G values can be attained at four geographically diverse study
sites in Southeast Queensland. According to results documented later, the proposed CELM-
KDE model outperforms five other competing deep learning models used for both point-based
predictions and prediction interval of electricity demand.

The remainder of the paper has been structured as follows: next section details some specific
related work on electricity demand prediction, specifically highlighting previous Al-based and
hybrid approaches. Section [3| details the proposed hybrid CELM-KDE model proposed for
daily prediction of G. Section [4] shows the experiments carried out to proof the effectiveness of
the proposed hybrid CELM-KDE approach. Section [5| closes the paper with some conclusions
and final remarks on the research carried out.

2. Related work

This section reviews the most important previous work on electricity demand prediction.
Table [I| summarizes the research works reviewed here. As previously mentioned, the first mod-
els to predict G were based on statistical and econometrics models. Some researchers started
to apply techniques based on the concept of persistence or historical behaviour to predict the
future values [34]. Also known as analogue-based method [35], these techniques use meth-
ods like Exponential Smoothing that outperform some of the more sophisticated optimisation
techniques such as Particle Swarm Optimisation [36]. Other statistical approaches such as
ARIMA-GARCH models were applied to the prediction of G [34]. However, these traditional
statistical techniques are neither adequate in capturing nonlinear properties of time series nor



flexible enough to accommodate for the abrupt changes in G that can occur due to sudden
changes in consumer electricity use attributable to factors extreme weather, social, or other
kinds of events [37].

Therefore, in recent years, research has largely focused on different AI models for improving
G prediction and drawing greater insights into the distribution of predicted errors for bet-
ter decision-making. These methods include both Deep Learning (DL) and Machine Learning
(ML) [38,39] as well as their hybrid counterparts aimed to capitalise on the merits of individual
algorithms for improved G prediction. For example, an ANN model proposed by the work of
Hamzagebi et al. [40] has predicted the monthly G in Turkey to demonstrate its efficacy over a
Seasonal ARIMA model. Conventional methods like ANN, SVR and DT however have several
drawbacks including their poor generalisation and anti-noise performance, local optimisation
issues, parameter modification and computationally inefficiencies [41]. Therefore, an Extreme
Learning Machine (ELM) [42] [43] has been rapidly adopted because of its generalisation capa-
bilities, the speed of model convergence without compromising the quality of predictions and
the easiness at which the model’s parameters can be set. In order to improve G prediction
problems, the study of Ertugrul [44] developed a recurrent ELM model with their simulations
showing that this model performs very well in predicting unsteady or chaotic datasets such as
those encountered in the proposed study’s G time-series.

Modern DL models like Recurrent Neural Network (RNN) [45, 46], Gated Recurrent Unit
(GRU) [47], Convolutional Neural Network (CNN) [48, [49] and Long Short-Term Memory
(LSTM) network [50] 51), 52] has become popular to tackled prediction problems related to
electricity demand. Through additional mapping layers to explore historical patterns, RNN
models can improve the accuracy of G predictions. In particular, an LSTM and a GRU model,
which is a variation of an RNN model, can resolve vanishing gradient issues that are commonly
encountered in RNN models [53]. In fact, Zheng et al. [54] has demonstrated that an LSTM
model can outperform conventional models by exploring long-term dependencies in daily G
data. In one study, an LSTM model was trained using multivariate input like temperature,
day characteristics, date and time [55]. Compared with a more established model like SVR and
Random Forest Regressor, the results showed improved accuracy of predicted G. Furthermore,
researchers have used a CNN model to overcome an algorithm’s limitation in predicting time-
series data and as a result of local connections and feature-sharing properties of a CNN model,
the training time and parameterization can also be reduced. This concurs with the study of
Amarasinghe et.al. [56] where a CNN model has been adopted to accurately predict G values.
In fact, their results also showed that a CNN model can outperform an SVR, as well as an
ANN, and some of the other DL techniques.

Several recent research studies are experimenting with hybrid models to solve the problem
of predicting G. For example, the study of Kim et al integrated CNN with an LSTM algorithms
to build a hybrid predictive model for short-term G predictions, capturing its improved perfor-
mance with a GRU, attention-based LSTM, LSTM and bidirectional LSTM model. Further,
the study of [57] has created a hybrid predictive model by integrating a CNN model with a
multi-layer bidirectional LSTM model to show its superiority over bidirectional LSTM, standard
LSTM, and CNN-LSTM model. Unlike previous studies that did not, this study has blended
an LSTM model with an CNN model to evaluate the efficacy of CNN-LSTM, CNN-LSTM,
and CNN-LSTM auto-encoder models. Similarly, the study of Sajjad et al. [25] as well as
Afrasiabi et al. [58] found that the CNN-GRU hybrid model is able to successfully predict the
G series, reaffirming the better predictive capability of a hybrid deep learning over a standard
(or standalone) model.



Table 1: Summary of the related works on electricity demand prediction analyzed in this paper.

Method Articles
Persistence-based [34]
Analogue-based [35]
PSO [36]
ANN [40), 41]
SVR and DT [41]
ELM A2, 43, 44
RNN 45, 46
GRU [47]
CNN [4S, 49]
LSTM 150, 511, 52, 54, 55
CNN [56]
CNN+LSTM 57]
CNN+GRU [25], 58]

3. Materials and Methods

This section provides details of the proposed hybrid CELM-KDE model employed in the
daily G and associated confidence interval predictions at four study sites in southeast Queens-
land. As mathematical description of convolutional neural network, extreme learning ma-
chine and benchmark models e.g., RFR, SVR, KNNR, LSTM and DNN are available else-
where [59] [60] 61, 62, 63, 64], [65], [66], [67, 68, 69], we only provide here details of CELM, followed
by the proposed hybrid CELM-KDE model.

3.1. Hybrid Ezxtreme Learning Machine-Convolutional Neural Networks Model

To construct a feature extraction system for the final predictive model, this study has first
designed the hybrid CELM model before embedding the Kernel Density Estimation method to
study the confidence intervals of predicted electricity demand. In principle, the CNN layers are
deployed to extract predictive features related to electricity demand G whereas the ELM layer
is finally used to integrate all of these features to build a low-latency predictive framework for
G(MW) data series.

Figure [1] shows a topological architecture of the hybrid CELM model.

Machine Model

I'ﬁ | \ ' Input (Lagged
b ’lr’ i f* ",1,' Series of G) Extreme Learning
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Layer Sub-Sampling
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Figure 1: Framework of the the proposed hybrid CELM model architecture.



In general, two stages make up the proposed hybrid CELM model: the first is the feature
extraction stage that uses CNN layers and the second is used as the layer for prediction of daily
G values. In accordance with earlier works, time-series data can be successfully extracted with
a CNN layer whereas a massive volume of sequential data can be handled relatively quickly
using an ELM model to feed in crucial predictive feature. Therefore in this study, the hybrid
CELM model is fed with the pre-processed historical G data features firstly into the CNN
model which extracts feature information for perceived output. The CNN model’s output is
then used as the input for the final ELM model, after its training phase to predict the G in the
testing phase.

3.2. Kernel Density Estimation: Confidence Interval Predictions of Electricity Demand

In this study we adopt the prior work of Rosenblatt and Emanuel Parzen [70] that devised
a non-parametric density estimation technique, known as KDE, in order to provide our hy-
brid CELM model a new capability to generate confidence intervals of predicted G values. In
contrast to conventional parameter estimations, the KDE method is able to solve the prob-
lem by using the data distribution’s actual properties rather than making prior assumptions
about the dataset [71]. Additionally, the proposed KDE method is able to achieve a greater
superiority, accuracy and smoothness throughout the estimation intervals compared with other
non-parametric estimations like a histogram approach, nearest neighbour method, and Rosen-
blatt method [72].

Suppose we have a dataset comprised of electricity demand (G) prediction error p =
(p1, P2, P35 - - -, Pn) Where n is the number of electricity demand error samples. Based on non-
parametric KDE, the probability density function (PDF) of error in G can be estimated as

follows ([T)).

b hZ (52 )

where f (p, h) is the KDE of predicted G error, h is the bandwidth that determines the interval
division of error data distribution, p; is the i G prediction error sample point and the function
K(p,h) denotes the kernel function whereas electricity demand error and the bandwidth are
independent variables of that function.

The choice of kernel function and bandwidth h are the main variables impacting the non-
parametric KDE and this involves a significant amount of selectivity in the kernel functions.
The most often used kernel functions are: Epanechnikov [73], gamma, and uniform kernels. It
is noteworthy that the choice of a kernel function has a lesser influence on the KDE compared
to the bandwidth. Due to its smooth properties, a Gaussian kernel is frequently regarded as the
best option and is suited for a wide range of applications. In this study, we adopt the Gaussian

kernel expressed as follows:
1 —p?
k)= e () @)

Therefore, the non-parametric KDE with a Gaussian kernel is expressed as Equation ({3)):

_1 P—pi ’ (3)
2 h
The bandwidth directly impacts the PDF of the G prediction error in the non-parametric

KDE. Therefore the distribution of the estimated model is impacted by local fluctuations,
which becomes severe when the bandwidth is too tiny and is affected by special sample points.

f(p,h)Z\/Q—h



However, the PDF will be too smooth if the bandwidth is too high to accommodate the dis-
tribution appropriately. In summary, non-parametric KDE is significantly influenced by the
proper bandwidth selection.

Therefore, in this study, the Silverman’s [74] rule-of-thumb is used to estimate the band-
width, h that uses simple methods to calculate mathematical formulas :

[SIN

h=ad" (4)
where ¢ is the standard deviation of the data.

By integrating Equation , the cumulative distribution function P (e) is calculated. For
a probability 1 — «, the upper and lower bounds of prediction errors at the confidence level is
expressed as:

F (6 < .pe(qix)) = !
i 1 2 b

F (6 < PA (la)> a (5)
- ¢ 2

where 1553) and ]56(;1 ) = upper and lower bounds of prediction errors at confidence level «,
respectively. Once the prediction error intervals are obtained, the lower and upper bound of
electricity demand G probability interval prediction can be approximately as:

GL(Of), GU(Q) ]:[ Gpredicted + Pe(la)’ Gpredicted T Pe(g)] ' (6)

Finally, by integrating the KDE method with CELM model, the objective (hybrid CELM-
KDE) model was designed and tested using daily electricity demand datasets.

3.3. Electricity Demand Data
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Figure 2: The study sites located in southeast Queensland where the proposed hybrid CELM-KDE
model was implemented for daily electricity Demand prediction.

In this study, historical electricity demand (G) data and the ground-based climate variables
from four sub-stations (Coolum, Cornubua, Caloundra and Lawnton, shown in Figure [2)) are



chosen to assess the efficacy of the proposed hybrid CELM-KDE model. These historical data
at a 30-min interval from 01/07/2011 to 30/06/2021 were obtained from Energex, the federal
government-owned electricity distribution company based in South East Queensland (https:
//www.energex.com.au) and ground-based climate variables were extracted from Scientific
Information for Land Owners (SILO) [75]. The 30-min electricity demand data (G) were
converted to cumulative daily demand. For interpretation of model performance in terms of
electricity demand normally measured in MWh in this paper, the respective timescale over
which results are presented should be applied. The statistical characteristics of data are shown
in Table 21

Table 2: Descriptive statistics of daily electricity demand (G) at the tested substations in South-east
Queensland where the proposed hybrid CELM model has been implemented.

Statistical Parameters ‘ Coolum Cornubia Caloundra Lawnton
Median (MW) 469.79 206.05 1045.44 613.69
Mean (MW) 474.21 208.60 1057.63 624.90
Standard deviation (MW) 58.30 35.75 130.08 103.45
Variance 3399.04 1277.78 16920.13 10701.25
Maximum (MW) 724.77 357.91 1622.60 1146.17
Minimum (MW) 16.87 29.25 516.45 83.30
Range 707.90 328.66 1106.15 1062.87
Interquartile range 73.63 44.28 153.97 117.71
Skewness -0.01 0.45 0.37 0.65
Kurtosis 5.95 4.12 4.56 4.98

From Table 2] the standard deviation of G for Cornubia, Coolum, Lawnton and Caloundra
sub-stations are 35.75, 58.30, 103.45 and 130.08 MW, respectively, indicating the high fluctu-
ation in electricity demand. Furthermore, to determine times of peak electricity demand, we
were also curious about the seasonality of our data. In that regard, a box plot (Figure
was also used, and the results show that the summer months of December, January and Febru-
ary have the highest electricity use. Also, the Weekends have lower G consumption than the
weekdays (Figure for all four sub-stations.

Table (3| shows the details of the SILO data, the climate input time series, were recorded
every 24h (daily), and there are no missing values, so the imputation of time series is not
required.

In this work, the aim was to predict the accumulated daily electricity demand using the
hybrid CELM-KDE model. Therefore, statistical studies were carried out by computing par-
tial autocorrelation function (PACF) and Mutual Information (MIF) to find the time-varying
patterns in the G time series. The PACF for GG time series for 2020 are displayed in Figure

Notably, the presence of repeating patterns in PACF suggests that there is seasonality in
G time series. The PACF plots for all sub-stations show that there is a strong correlation at
lagl. Tt should be noted that the PACF plots only show linear relationships between electricity
demand; however, the time series may also include non-linear relationships. These non-linear
interactions can be captured by the models utilised in this study. Furthermore, the curve
indicating the values of MIF as the delay duration (7) rises is shown in Figure . It is observable
that as the delay time increased, the MIF deteriorated. When the value of MIF reaches the
first local minimum, the ultimate delay duration is typically established. As a result, the G
delay time is chosen to be 7 = 6, 5,6 and 5 for the Coolum, Cornubia, Caloundra and Lawnton,
respectively. It means that the closest six datapoints, i.e. G, G -1, ..., G—¢), have similar
information, namely, dependent relation for Coolum and Caloundra. Similarly, for Cornubia
and Lawnton, the closest five datapoints, i.e. G, G-1),...,Gu—5), are correlated.
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Table 3: Description of the extensive pool of predictor variables from the Scientific Information for
Landowners (SILO) database used for the prediction of daily electricity demand G (MW) at four

substations in southeast Queensland.

Climate-based Predictor Variables ‘ Acronym
Maximum temperature (°C) Tmax
Minimum temperature (°C) Tmin
Vapour pressure (hPa) VP
Vapour pressure deficit (hPa) VPd
Evaporation - synthetic estimate (mm) Esyn
Solar radiation - total incoming
downward shortwave radiation on a horizontal surface (M.J/m?) GSR
Relative humidity at the time of maximum temperature (%) RHmax
Relative humidity at the time of minimum temperature (%) RHmin
Evapotranspiration - Morton’s areal actual evapotranspiration (mm) Etm
Mean sea level pressure (hPa) MSLP
19 a)Coolum 17 b) Cornubia
081 081t

0 0.6 0.6

Q

X 0.4 0.4

0.2¢ 02} ®
[ 1] @ [ ]
Msee 0L atelr
o Pt e, ([
: ; - ; R o . :

0 10 20 30 40 0 10 20 30 40
11 ¢) Caloundra 7t d)Lawnton
0.8 e 0.8 ]
0.6} .
i 0.6
S04l
e 04}
02|l 1, ol
0 ? ?? % [ ] u‘l' &
= I L
1 s
0 10 20 30 40 0 10 20 30 40
Lag (days) Lag (days)

Figure 4: The partial autocorrelation function (PACF) of the daily time series of G data used in
training the proposed hybrid CELM-KDE model for Coolum, Cornubia, Caloundra and Lawnton
study substations. The blue lines denote the statistically significant boundary at the 95% confidence
interval
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Figure 5: The mutual information function (MIF) test performed to validate the PACF for the input
matrix of antecedent lagged daily electricity demand (G, MW) when designing the proposed hybrid
CELM-KDE model.

The ELM model was used to validate the PACF and MIF criterion for choosing the order
of lag variable. Figure [6] displays the ELM model (Transfer function= Sigmoid and number
of hidden neuron= 50) performance in terms of Root Mean Square Error (RMSE, MW),
Relative RMSE (RRMSE, %) and correlation coefficient (r) with varying lag (1-40) for the 4
substations at South East Queensland (SEQ). It is important to note that from Figure |§|, the
optimal lagged input combination was 6,5,6, and 5 for daily G data for Coolum, Cornubia,
Caloundra and Lawnton, respectively, with the higher magnitude of Correlation Coefficient (r)
and lower magnitude of RMSE and RRMSE.

3.4. Explainability of the Proposed Hybrid CELM-KDE Model

In order to build a robust CELM-KDE model, it is vital to firstly normalise the G data as
well as the predictor variables to prevent the non-convergence of the model that can be brought
on by different magnitudes of numerical values. In this study, a linear normalisation has been
considered appropriate as follows:

Xt - Xrnin
Xnorm - Xmax _ Xmin (7)

where X,om = normalised X;, X.x and X, are, respectively, the maximum and minimum
values in the dataset.

The normalised G and climate variables is then divided into a training set and testing set
for training and testing of the proposed CELM-KDE model. The training (80%) comprises a
dataset from 01,/07/2011 to 30/06,/2020 (3,652 data points), and the testing (20%) set comprises
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Figure 6: Validation of the antecedent lagged electricity demand (G) using the extreme learning
machine (ELM) Network.

the dataset from 01/07/2020 to 30/06/2021 (365 data points). The training set is further
divided into training (80%) and validation (20%) set. With an overall aim to reduce the
prediction errors, the training set is used to fit the optimal model parameters, and the validation
set is used to determine the optimal setting for the hyperparameters.

In this paper, we provide greater explainability of the proposed hybrid CELM-KDE model
by adopting the SHapley Additive exPlanations (SHAP) [76] 33] approach. This method is
becoming very prominent for model interpretability aiming to demonstrate which of the features
from the climate variables as well as the lagged G) input could be considered as the main
contributor towards the overall prediction of daily G dataset.

As revealed in Figure [7], the SHAP values generated by the CatBoost Regressor model
clearly illustrates each predictor variable’s effect on the model’s output while also providing the
rank of the variable attributes according to the total of those values across all of the samples.
The colour indicates the value of the characteristic (blue: for low, red: for high). It is noticeable
that the climate-related model input features such as Tmax and Lagl (i.e., the first lag of
() are both found to have a high degree of importance of the G predictions generated by the
hybrid CELM-KDE model for all of the four sub-stations. There also appears to be a positive
correlation between the input defined as Lagl and the model output, as well as between Tmax
and the model output as indicated by the commensurate increase between the feature values
and the SHAP values.

3.4.1. Development of the Proposed Hybrid CELM-KDE Model

The proposed hybrid CELM-KDE model in this study integrates the individual merits of
the CNN (as a feature extraction tool) and ELM (as a predictive modelling framework), as
well as the KDE approach to generate confidence intervals of predicted daily G values. The
convolutional layer was the core of the proposed CELM model. In our proposed framework,
the CNN model extracts features among variables (Lagged G and climate variables from SILO)
that affect G. Each CNN layer uses the ReLU activation function. Then, the CNN layer’s
output is flattened to be fed to the complementary ELM model to predict the daily G.

Figure [§] shows a block diagram of the proposed model. A summarised CELM algorithm
involving the following eight steps, is shown also in Figure [9}
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Figure 7: The explainability of the input features using the SHapley Additive exPlanations (SHAP)
method used in the design of the proposed hybrid CELM-KDE model. These features were ranked
in descending order of importance (e.g., Lagl, which is the historical electricity demand to capture
the highest feature importance). SHAP values on horizontal axis denote the influence of individual
features on the model output (e.g., positive SHAP = improvement of model output). The vertical
axis denotes the value of a given feature (i.e., the closer the colours are to red, the higher the value of
the feature).

e Convert climatic variables and the lagged G dataset into signal vectors for the CNN
model’s input.

e Initialise the CNN parameters, such as the maximum epoch of iteration, the learning rate,
the optimiser and the number of filters.

e Implement convolution and pooling.

e Fine-tune the stacked model using the Optuna hyperparameter optimization framework,

as shown in Figure

e Finish the optimisation and acquire the features of the dataset

e Use the extracted features for regression by ELM.

13
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Figure 8: Block diagram of modeling framework of the proposed hybrid CELM-KDE model used for
electricity demand predictions.

e Initialise the ELM parameters, such as the total number of neurons in the reservoir and
the activation function.

e Get the final optimised CELM model and predict on the test dataset.

Extreme Learning Machine

1D Convolutional Neural Network (ELM)
Lagged Time Series (CNN) I ! 1

®

I= Input Layer

Pre-processing C1 & C2 = Convolution Layer
P=Pooling Layer Bias Hidden Neuron
F=Flattening Layer

Figure 9: Topological structure of the hybrid CNN model integrated with an ELM layer used in
daily electricity demand (G, MW) prediction.

We then implemented the proposed KDE method used for daily electricity demand G in-
terval predictions described as follows:

Step 1: The proposed CELM and benchmark models are used to generate point predictions ¥ =
[Y1, ..., yn] of electricity demand G where n = testing dataset.

Step 2: Calculating Prediction Error (PE) between the actual [xy,. .., x,] (test dataset) and pre-
dicted Y. This PE can be expressed as PE = [ey, ..., e,], where e; = y;—x; , i = [1,...,n].
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Step 3: Normalising prediction errors to improve the KDE fitting performance using PE =

where PE, i and o are normalised PFE, mean and standard deviation respectively of the
actual PE.

Step 4: Establishing a non-parametric KDE model for normalised PE (PE') to obtain cumulative
PE distribution function as per Equation (3]) and determining the KDE bandwidth using
Silverman’s rule of thumb.

Step 5: Obtaining the optimum interval [PE],, PE'up] of the PE at 95% confidence using Equa-

tions and

Step 6: Calculating the prediction interval of electricity demand at 95% confidence level by trans-
forming PF intervals reversely.

The inverse transforming formula of PFE intervals is expressed as:

Y=Y+ |[PE,-0c+p]-Y (8)
and

Y20:Y+[PE;OO-+M]Y (9)

where PE, and PE,, = lower bounds and upper bounds of the PE, 1 and ¢ = mean and
standard deviation of PFE respectively, ¥ = the point prediction of electricity demand
using CELM and benchmark models and Y, and Y}, = predictive bounds of electricity
demand G.

3.4.2. Benchmark Models

In order to appraise the merits of the proposed hybrid CELM-KDE model, this study has
developed five competing deep learning (DNN, SVR, RFR, KNNR, LSTM) models. All models
were constructed using Keras 2.2.4 [77] library on TensorFlow 1.13.1 [78] back-end in Python
3.6 programming platform. The training of all models was conducted on Intel Core i7 CPU
with 32 GB RAM.

Selecting the most optimal hyperparameters is crucial so in this research, we adopted the
Optuna [79] method that provides an open-source program to tune the model hyperparame-
ters. The Optuna package provides benefit of assessing hyperparameters using a define-by-run
API, which estimates the parameters based on subsequent evaluations. It also determines an
objective function score for each collection of hyperparameters (minimised or maximised) and
after that creates a probabilistic model favouring efficient hyperparameters in the search. Ad-
ditionally, this method also uses an early stopping or pruning process to eliminate unfavourable
possibilities without first testing them. Furthermore, it has a parallelisation capability allowing
many scenario executed simultaneously on various CPUs. In this study, we trained all models by
minimising (RMSE) with a set of hyperparameters. Table |4/ shows the hyperparameters search
space for the CELM as well as benchmark models withe optimal hyperparameters selected via
Optuna highlighted in boldfaced.

3.5. Rationale for Performance Metrics and Ezxplanations for Model Evaluation

This study acknowledges that minimal prediction error is a key goal in point-based G
predictions. While minimising such as error is feasible through a robust predictive model, it
becomes more difficult in case of probabilistic predictions if we prefer a PI that minimises this
error for a quantile or percentile as an upper and lower bound PI. A PI should be ideally as
sharp as feasible as possible while still encapsulating a real point-based predicted values as a
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PI that is too widely distributed is unlikely to generate much useful information for accurate
decision-making.

In Table 4(a) [80} 81, 82, [83], 4(b) [66, 84 [75], 4(c) [85], 86l 87, 88|, and 4(d) [89, 00, O1], we
describe these metrics used to evaluate the skill of both point-based and probabilistic predictions
of daily GG dataset in the hybrid CELM-KDE model’s testing phase.

Table 4(a): Deterministic performance measures denoted as Class A used to evaluate the proposed
hybrid CELM-KDE model. Note: G™ and GP are the observed and predicted value of G, (G™)
and (GP) are the observed and predicted mean of G, p stands for the model prediction, x for the
observation, pr for perfect prediction (persistence), and r for the reference prediction, VAR is the
variance, SD is the standard deviation, and n corresponds to the size (number) of predictions.

Deterministic Performance

Measure (Class A) Definition

2 (G™ = (G™M)(GP — (G7))

Correlation Coefficient r= — = — = (10)
Vi (G = (Gm)2 V3 (GP — (GP))
1 n
Root Mean Square Error (MW) RMSE = - Z(GP — Gm)? (11)
i=1
Mean Absolute Error (MW) MAE = 1 dolar—am| (12)
n
i=1
Relative Root Mean Square (%) RRMSPE = RM;SE x 100% (13)
MAFE
Relative Mean Absolute (%) RMAPE = o 100% (14)
Uncertainty at 95% 1.96(SD? — RMSE?)°® (15)
. _ [(n—1) x MBE?
t-statistic TS = \/RMSE?TVMBE2 (16)
Mean Bias Error (MW) MBE = (100/ (G™)) > (G?; — G™;) (17)
n - 2 1/2
L . 1 GP - G™
Standard deviation of the Relative Error STDRE = Z (18)
n—14& Gm
m _ Gp
Explained Variance Score Eyor=1— W (19)
nocam _ GPY x 1
Absolute Percentage Bias (%) APB = Zz=1(§:n gm) * 100) (20)
i=1
. RMSE(p, x)
kill =1— —nr—Frr—= 21
Skill Score SS RMSE (. 7) (21)

In principle, we devised four classes of evaluation metrics in testing phase where observed
and predicted G are compared. It is noteworthy that this comprises of Class A measures (Table
4a) as an indicators of dispersion (or “error”) of individual points (with a trivial value should
be attained for an idea model). According to Li et al. [95], different ranges of RMSPE and
MAPE can be defined to show a models’ capability. A model precision could be considered as
excellent for 0 < RRMSPE or RMAPE < 10%, good for 10% < RRMSPE or RMAPE < 20%,
fair for 20% < RRMSPE or RMAPE < 30% and poor for RRMSPE or RMAPE > 30%.

In terms of Class B measures (Table 4b), the overall performance indicators take a value
of unity for a perfect model. As these metrics are normalized between [0, 1], they provide
respective comparison of one model against another. However, Class C metrics (Table 4c) are
used to study the distribution similitude where the goal is to compare one or more cumulative
frequency distributions of modelled G data to that of a reference data. We also adopted the
study of Gueymard that has proposed the Combined Performance Index (CPI') which combines
RMSE, KSI, and OV ER into one statistical indication where the smallest value would indicate
the best model from a frequency distribution [96].
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Table 4(b): Deterministic performance measures denoted as Class B used to evaluate the proposed
hybrid CELM-KDE model. Note: G™ and GP are the observed and predicted value of G, (G™) and
(GP) are the observed and predicted mean of G, n is the size (number) of predictions, and CV ,, and
CV,, are the observed and predicted coefficient of variation.

Deterministic Performance

Measure (Class B) Definition
: > (G™ — GP)?
Willmot’s Index Ewr=1- =5 =u 22
> S TSGR .
Nash—Sutcliffe Ens =1 — £=L — (23)
S T
Legates and McCabe’s Index Epy =1—- 54=1 — (24)
Zi:l |Gm _ <Gm>|
\/i %3 (Gr - Gy
Theil’s Tnequality Coefficient TIC = - (25)
<\/,1L x 3 (@) + \/i X2 (G”)2>
=1 i=1
Kling-Gupta Efficienc KGE =1—/(r—1)" + (e 2+ v, )" (26)

Table 4(c): Deterministic performance measures denoted as Class C used to evaluate the proposed
hybrid CELM-KDE model. Note: D, is the absolute difference between the calculated and measured
CDF, Xpin and Xpee are the minimum and mazimum values of D,, A. is the critical area, D., is
a statistical characteristic of the reference distribution or critical value, N is number of points, and
®(N) is a pure function of N [92, [95]

Deterministic Performance

Measure (Class C) Definition
, 100 [Hmes
Kolmogorov-Smirnov Index KSI = 1 D, dx (27)
¢ J Xmin
100 [
OVER Index OVER = 1 max (D,, — D.,0)dz (28)
c JXx
where Ao = Do Xmaz Xmin) (29)
andD, = ®(N)/N'/? (30)
KSI E 2RMSE
Combined Performance index CPI = ST+ OV f+ ftMS (31)

We also adopted the Class D measures (Table 4d) as an interval forecasting evaluation
metric. Here, a trustworthy prediction interval is one with a bigger PIC'P and a lower
PINAW [97]. Furthermore, the value of F'Value is meant to incorporate two contrasting
indices such as PICP and PINAW serving as a thorough indicator to choose the best PI [9§]
value. In general, a higher value of F' is likely to indicate a better performance of an interval
prediction model. As prediction interval and coverage widths are isomorphic we have analysed
the trade-off between coverage and prediction interval width using Winkler score (W.S) [99]
since the coverage can be readily attained by having a bigger prediction interval width. More
generally, a better-performing prediction interval is characterised by a lower ARIL and WS
and finally we use C RPS where a skewed negative value with a lower number can indicate a
higher prediction accuracy and the projected C'DF is closely aligned with actual CDF.

In order to find the best performing model, it is difficult to compare different statistical
indicators at the same time since each has its own merits and shortcomings. In this study,
the overall model performance was ranked using Global Performance Indicator (GPI) [100]
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Table 4(d): The probabilistic performance measures denoted as Class D used to evaluate the proposed
hybrid CELM-KDE model. Note:N denotes the number of test samples, y; is the i observation, L(G;)
and U(G;) represent lower and upper bounds of the i™" G Prediction Interval, respectively. G™ is the
observed value of G. R is the Range. [9])]. In CRPS metrics, 1(-) is the Heaviside function, it takes
the value of 1 when t >y and equals 0 otherwise.

Deterministic Performance

Measure (Class D) Definition
N
Prediction Interval Coverage 1
Probability PICP =& Zlcl (32)
1 if y; € (U(G; , L G;
wherec; :{ ify: € (UG, L . ) (33)
otherwise
Mean Prediction Interval
Width MPIW = NZ; — L(Gy)) (34)
PICP x 2
F Value F— e MPIW (35)
PICP + 5o
N
Average Relative Interval 1 (U(G;) — L(Gy))
Length ARIL = — Zl o (36)
A L(G;) <y <U(Gy)
Winkler Score ws A +2(L(Gh) —yi)/a yi < L(G;) (37)
Ai+2(y —U(Gy)) [ex v > U (Gi)
whereA; = U(G;) — L(G;) (38)
N
Normalized Mean Prediction 1
Interval Width PINAW = R (2 (U(G) - L(G) (39)
N
Continuous Rank 1
Probability Score (MW) CRPS = N; crps (Fi, y:) (40)
wherecrps (F,y) = / (F(t)—1(t—y))’dy (41)
calculated using six different metrics.
GPI, = Z a;(9; — vij) (42)

where a; = median of scaled values of statistical indicator, j = 1 for RMSE, MAE, MAPE,
RMSPE and MBE (j = 1,2,3,4,5), —1 for r; g; = scaled value of the statistical indicator j
for model ¢ with larger GPI indicating a better performance.

The model performance was further evaluated using the direction of movement measured
by a Directional Symmetry (DS). The DS provides a statistical measure of a model’s ability to
predict the direction of change, positive or negative, of a time series from one value to the next
value:

1 n
== d x 100% (43)
n t=2
where,

) (44)
0 otherwise

dt_{l if (G = G (G = Gy) > 0

We also adopt the Promoting Percentage of Absolute Percentage Bias Aspp, Mean Absolute
Error Apyag, and RMSE Agysp [101] as follows:

(APB, — APB,)
APB,

AApPB = (45)
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(KGE, — KGE>)

e = [EEEE (16
RMSE, — RMSFE
ARMSE = ( RlMSEl 2) (47)

where APB;, RMSE, and KGFE; are objective model performance metrics, and AP By, RMSE,
and KGFE, are benchmark model performance.

We employed Diebold-Mariano (DM) as well as Harvey, Leybourne and Newbold (HLN)
test to demonstrate superiority of the CELM-KDE against all benchmark models following a
statistical approach. Note that both statistic should exceed zero for the best model [102] [103],
104).

4. Results and Discussion

In this section we appraise the efficacy of the proposed hybrid CELM-KDE model for its
ability to predict point-based daily electricity demand, as well as the confidence intervals of G
predictions. The proposed model is also evaluated across geographically diverse study sites in
southeast Queensland, Australia. Various statistical performance measured and visual analysis
of observed and predicted G values are compared for the hybrid CELM-KDE as well as the
benchmark model.

4.1. Point FElectricity Demand Prediction Results

In this section, we compare the proposed hybrid CELM-KDE model with the benchmark
models using diagnostic plots and performance metrics to assess its efficacy for daily G predic-
tion. Tables [p| shows the values of r, RMSE(MW), MAE(MW), STDRE(%), and E,, for
CELM-KDE model in comparison with DNN, RFR, SVR, LSTM and KNNR models for four
stations in southeast Queensland. In terms of metrics in Table |5, the proposed CELM-KDE
model outperforms the alternative models for all sub-stations. For instance, the CELM-KDE
model obtains an r &~ 0.946 and a RMSFE =~ 16.422 for Cornubia sub-stations which are substan-
tially better values than the ones obtained by the method in the second-position (the LSTM)
with 7 =~ 0.929 and a RMSE =~ 19.120. Thus, it is proven that the proposed CELM-KDE
model could be used as a well-designed prediction tool for daily G prediction.

Even though the hybrid CELM-KDE models used in daily electricity demand (G) prediction
seems to perform dramatically better than the alternative methods, it is important to note
that a direct comparison is deemed irrational due to geographic differences and subsequently
different G characteristics at these study sites. These differences can prevent an inter-site
comparison in the absence of normalised error metrics. We have therefore used the relative
errors, i.e., RRMSPE and RMAPE, as shown in Tables[6] to overcome this problem and enable
comparison of the model performance at geographically disparate sites.

We now revert to the Nash-Sutcliffe coefficient (Exg) and Legates and McCabe’s Index
(E'Ly) to evaluate the proposed CELM-KDE model as these metrics are considered superior
to Willmott’s Index (Ey ) especially when reasonably large values are anticipated even for a
poorly fitted model (Table [7). In this study, we have used (Ey;) as a modified Ey; where
errors and discrepancies receive proper weighting instead of being exaggerated by square values.
Compared to the DNN, RFR, SVR, LSTM and KNNR models for all four substations, the
comparative performance in Table [6] reveals that the hybrid CELM-KDE model exhibits the
lowest RRMSPE and RMAPE. For instance, the CELM-KDE model for the study site Cornubia
has produced a lower RRMSPE (=~ 8.896%) and RMAPE (= 7.258%) compared to other models
(RRMSPE and RMAPE > 10%). Furthermore, the hybrid CELM-KDE model performs well
at all four substations with high magnitudes of (e.g. Lawnton substation) Ey; ~ 0.909,
Ens =~ 0.857, and Ep ) ~ 0.627. These metrics for the other models are of lower magnitude.
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Table 5: The testing performance of the proposed hybrid CELM-KDE model vs. the DNN, RFR,
SVR, LSTM, and KNNR, as benchmark models measured by the correlation coefficient (r), root mean
square error (RMSE) and the mean absolute error (M AFE) between observed and predicted daily G
values.

Model Performance Metrics
Sub-Stat. | Model |=——pyrSEQIW) | MAEQMW) | STDRE | By
CELM | 0.935 31.069 24.347 3.87% | 0.764
= DNN | 0.922 34.621 26.535 4.24% | 0.720
2 RFR | 0.926 33.974 25.787 4.25% | 0.730
S SVR | 0.925 33.896 26.265 4.17% | 0.727
LSTM | 0.928 32.809 25.179 4.07% | 0.742
KNNR | 0.910 36.412 28.366 4.36% | 0.679
CELM | 0.946 16.422 12.927 5.93% | 0.798
= DNN | 0.882 24.681 19.831 10.75% | 0.597
‘é RFR | 0.933 19.162 15.214 7.77% | 0.750
5 SVR | 0.943 21.286 17.099 9.72% | 0.734
© LSTM | 0.929 19.12 15.117 7.14% | 0.743
KNNR | 0.917 22.885 18.675 9.49% | 0.689
CELM | 0.944 67.215 53.402 4.34% | 0.788
g DNN | 0.917 81.117 65.092 5.26% | 0.705
= RFR | 0.935 74.562 60.29 4.86% | 0.749
2 SVR | 0.939 72.71 58.769 4.73% | 0.772
O LSTM | 0.938 71.529 56.682 4.71% | 0.771
KNNR | 0.912 92.393 75.88 6.19% | 0.641
CELM | 0.962 38.412 29.845 3.87% | 0.857
5 DNN | 0.954 43.218 33.702 4.76% | 0.829
= RFR | 0.948 45.886 36.021 4.85% | 0.806
2 SVR | 0.929 53.573 42.241 5.73% | 0.745
= LSTM | 0.952 42.967 33.634 4.62% | 0.822
KNNR | 0.924 53.974 44.743 5.70% | 0.728

Most significantly, RRMSPE and Eyg values for all four substations are less than 10% and
> 0.8, respectively, using the hybrid CELM-KDE which indicates a high-performance model.
In light of this, it was clear that the hybrid CELM-KDE model outperformed the DNN, LSTM,
and all other alternative models.

The three model performance metrics, i.e., U95, T'S, and TIC, are shown by their respective
values in Table [§l As it can be observed, the hybrid CELM-KDE model encountered lesser
uncertainty compared to the other prediction models with ~ 86.1167 and ~ 90.513 for the
CELM-KDE and LSTM, respectively indicating that the former model is more generalisable
compared with benchmark models. Additionally, the value of TS shows significant disparities
between the models’ performance for all four substations, e.g. for Cornubia: the value of T'S
was ~ 1.217, ~ 7.110, =~ 6.220, =~ 10.127, =~ 5.133, =~ 9.893 for CELM, DNN, RFR, SVR,
LSTM, and KNNR models, respectively. Accordingly, Theil’s Inequality Coefficient (T'IC') is
another criterion to measure the prediction accuracy used in this study. Note that the T1C
values nearer to 0 are expected to show a higher predictive capability. The hybrid CELM-
KDE model seems to excel at all of the substations based on the value of TIC, which are
much lower for the CELM-KDE compared with other models. Additionally, using the DM
and HLN tests, we note that our model predicted G is hypothetically evaluated against DNN,
RFR, SVR, LSTM and KNNR models. The DM and HLN values, as listed in Table[9} support
the claim that the proposed CELM-KDE model is more accurate than all alternative models.
These analysis show that the CELM model’s capacity is acceptable in respect to producing
more accurate G predictions to concur with previous results evaluated using deterministic
performance indicators.
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Table 6: Comparison of the accuracy of proposed hybrid CELM-KDE model vs. the benchmark
models using relative errors (RRMSPE, %) and (RMAPE, %) for geographically diverse tested
sites. The optimal model is boldfaced.

Sub-Stations | Predictive Model E/I]gj(\l;; IE ;,E.;? )rr‘na]r%ljc\; Al\l/:I)eEt(r;éc)s
CELM 6.428% 5.000%
DNN 7.162% 5.360%
Coolum RFR 7.028% 5.206%
SVR 7.012% 5.356%
LSTM 6.788% 5.119%
KNNR 7.533% 5.768%
CELM 8.896% 7.258%
DNN 13.370% 11.954%
Cornubia RFR 10.380% 8.962%
SVR 11.531% 10.508%
LSTM 10.357% 8.606%
KNNR 12.397% 11.132%
CELM 6.688% 5.435%
DNN 8.071% 6.704%
Caloundra RFR 7.419% 6.228%
SVR 7.235% 6.080%
LSTM 7.117% 5.844%
KNNR 9.193% 7.954%
CELM 6.371% 4.965%
DNN 7.168% 5.755%
Lawnton RFR 7.610% 6.087%
SVR 8.885% 7.200%
LSTM 7.126% 5.708%
KNNR 8.952% 7.716%

Figure [LO| presents a thorough evaluation of the proposed CEM-KDE model by showing the
frequency distribution of absolute prediction error (|PE|) generated by the CELM-KDE model
vs. the alternative models. For all four substations, the CELM-KDE model achieved |PE|
that were below the lowest range (£25MW, £15MW , +60M W and £25MW for Coolum,
Cornubia, Caloundra and Lawnton, respectively).

Figure [11] shows a box plot of |PE| for the proposed CELM-KDE as well as benchmark
models. Importantly, we note a smaller PE for the case of CELM-KDE. Furthermore, to acquire
a clearer view of the residual distributions, the Kernel Smoothing Density Function (K.SDF)
plots of standardised residuals are presented (Figure [12). Notably, the hybrid CELM-KDE
model’s standardised residual KSDF' plot is quite similar to the conventional norms. We
also show the Empirical Cumulative Distribution Function (ECDF') in Figure 13| to acquire a
transparent representation of PE distributions. Evidently, the EC' DF line plots of the proposed
CELM-KDE model has a very close profile for all substations compared with benchmark models.
The superior efficacy of the hybrid CELM model in predicting daily G is further determined
for all four substations in respect to the frequency plot (Figure , box-plot (Figure ,
KSDF and ECDF plot (Figures|12| and , all suggesting the CELM-KDE model exceeds the
performance of the benchmark models.
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Table 7: Evaluation of the proposed hybrid CELM-KDE model using the Willmott’s Index (Eywr),
Nash—Sutcliffe Coefficient (Eng) and the Legates & McCabe’s (Erys) Index. The best model is
boldfaced.

Sub-Stations | Predictive Model Model Performance Metrics
Ewr | Ens | Erm
CELM 0.855 | 0.764 0.538
DNN 0.833 | 0.710 0.496
Coolum RFR 0.839 | 0.721 0.510
SVR 0.836 | 0.721 0.501
LSTM 0.851 | 0.738 0.522
KNNR 0.802 | 0.677 0.461
CELM 0.877 | 0.797 0.562
DNN 0.553 | 0.565 0.328
Cornubia RFR 0.788 | 0.730 0.485
SVR 0.652 | 0.682 0.421
LSTM 0.818 | 0.729 0.488
KNNR 0.653 | 0.636 0.367
CELM 0.860 | 0.787 0.552
DNN 0.802 | 0.693 0.454
Caloundra RFR 0.801 | 0.740 0.494
SVR 0.817 | 0.755 0.507
LSTM 0.831 | 0.761 0.525
KNNR 0.618 | 0.613 0.363
CELM 0.909 | 0.857 0.627
DNN 0.875 | 0.820 0.579
Lawnton RFR 0.852 | 0.798 0.550
SVR 0.787 | 0.728 0.472
LSTM 0.875 | 0.821 0.580
KNNR 0.779 | 0.720 0.441
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Table 8: Evaluation of the proposed hybrid CELM-KDE model in terms of the Uncertainty at 95%
confidence (U95), t-Statistics (7°S) and the Thiel’s Inequality Coefficient (T'1C')

Sub-Stations | Predictive Model M[(}(gigl P‘erfc;‘;nal‘lce l\é{?g‘lcs
CELM 86.167 | -0.421 0.032
DNN 94.952 -4.121 0.036
Coolum RFR 93.168 -4.139 0.035
SVR 93.301 -3.377 0.035
LSTM 90.513 -2.830 0.034
KNNR 100.700 | -2.092 0.038
CELM 45.505 1.217 0.044
DNN 66.332 7.110 0.064
Cornubia RFR 51.854 6.220 0.050
SVR 55.691 10.127 0.055
LSTM 52.128 5.133 0.050
KNNR 60.008 9.893 0.059
CELM 185.940 | 1.978 0.033
DNN 222.010 4.497 0.040
Caloundra RFR 204.480 4.131 0.037
SVR 197.050 6.017 0.035
LSTM 195.700 4.559 0.035
KNNR 249.000 6.759 0.045
CELM 106.480 | -0.959 0.031
DNN 118.090 4.776 0.035
Lawnton RFR 125.570 4.517 0.037
SVR 145.420 5.802 0.043
LSTM 118.970 1.621 0.035
KNNR 148.250 3.840 0.044

Table 9: Evaluation of the proposed hybrid CELM-KDE model in terms of: (a) Diebold-Mariano
(DM) test statistic, (b) Harvey—Leybourne-Newbold (HLN) test statistic. The column is compared
with rows so and if the result is positive, the model in the rows outperforms the model in the column.

a)
\ CELM DNN RFR SVR LSTM KNNR
CELM 4.12 4.784 3.194  5.59 5.833
DNN -4.529 -5.376  -3.558 -1.555
RFR 1.974  -0.075 5.007
SVR -1.475 1.717
LSTM 3.736
b)
\ CELM DNN RFR SVR LSTM KNNR
CELM 4.326 5.023 3.353 5.869 6.124
DNN -4.755 -5.644 -3.735 -1.633
RFR 2.072  -0.079  5.257
SVR -1.548  1.802
LSTM 3.922
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Figure 10: Cumulative frequency of absolute prediction

error (|PE|) generated by hybrid CELM-
KDE compared with benchmark models.
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Figure 13: Empirical Cumulative Distribution Function (ECDF') of predicted and actual G(MW),
generated by the proposed hybrid CELM-KDE wvs. the benchmark models.

Using KGE, APB, GPI, and CPI, we now reaffirm the accuracy of the the hybrid CELM
model. In particular, the KGE metric aims to tackle several issues found in case of Eyg by a
breakdown of Eyg into its component pieces such as correlation, variability bias, and mean bias
error. These findings demonstrate that the hybrid CELM-KDE model majorly outperforms the
counterpart models, see Figure [I4] where a reasonably high KGFE and a relatively low APB are
evident. Furthermore, as each of the deterministic indicators mentioned so far have benefits
and constraints, it is perhaps challenging to assess the accuracy of several models with a single
metric.

We now revert to GPI as a metric proposed by Despotovic et al. [I00] to address the above
issues. In general, GPI is adopted to rank the overall models’ performance whereby a high
value is expected to indicate a greater model accuracy. Figure shows this metric where
the proposed hybrid CELM-KDE model is seen to outperform all of the benchmark models,
indicated by a high GPI at all sub-stations. As additional measure of the hybrid CELM-
KDE model accuracy, we show CPI[ as a metric that can discriminate various models more
strictly by combining traditional information on dispersion and bias as RMSF) and providing
information on distribution resemblance through KSI and OV ER. With the lowest CPI at
all sub-stations tested, Figure [16| reaffirm that the hybrid CELM-KDE model outperforms all
benchmark models quite significantly.

Table shows the Promotion Percentages (\) computed to assess the proposed CELM-
KDE model whereby A provides the relative % improvement of this objective model against
all benchmark models. Similar to previously reported findings (Tables , the hybrid CELM-
KDE models exhibits a superior performance at all sub-stations. It should be noted that DNN,
RFR, SVR, LSTM and KNNR, for example, is considerably worse in terms of RMSE for the case
of Cornubia by ~ 50%, =~ 16%, ~ 29%, ~ 16%, and ~ 39%, respectively, when compared to the
hybrid CELM-KDE model (see Table . Consequently, with positive promoting percentage
errors, we note that the hybrid CELM-KDE model seems to have a better predictive skill.

Figure |17 shows the directional similarity D.S of the proposed hybrid CELM model where
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the benchmark models.

the magnitude of this metric is greater than other models with an average of ~ 82.5%. To concur
with this finding, the Taylor diagram shown in Figure 18| that maps the correlation (r) enables
us a complementary assessment of the model performances. In terms of standard deviation
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Figure 16: The Combined Performance Index CPI comparing the hybrid CELM-KDE with the
benchmark models.

(SD), the Taylor diagram provides a tangible and compelling statistical comparison between
predicted and observed G based on r. In accordance with earlier findings, and considering
the positive A\, Taylor plot and DS metrics, we can assert with confidence that the hybrid
CELM-KDE model is significantly capable in predicting daily G data.

4.2. FElectricity Demand Interval Predictions

Although the point predictions can help us to predict the recorded G value as a definitive
(or deterministic) test point, there are several factors that can contribute to their underlying
predicted uncertainties. We have therefore used the interval prediction approach by selecting
the prediction error (PFE)) through a Kernel Density Estimation (KDE) distribution test on all
PE values. The purpose of this was to better understand the prediction intervals at the 95%
confidence level where a Gaussian distribution was used with bandwidth determined using the
Sliverman’s rule of thumb.

In Figure [I9] we now show a bar chart representing the PIC'P and PINAW which are
probabilistic measures of prediction intervals providing a range of values that are likely to
contain the deterministically predicted value or a single observation given the specified settings
of the predictors. To interpret this result, consider for example, a 95% prediction interval of
[5,10] is expected to show that the model is 95 % confident that the next new observation will
fall within this range of electricity demand.

Evidently, for the data tested at the Coolum substation examined at the 95% confidence
level, the magnitude of the PICP generated by the hybrid CELM-KDE, as well as DNN, RFR,
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SVR, LSTM and KNNR are ~ 95.6%, ~ 96.4%, ~ 95.9%, =~ 95.6%, =~ 95.6%, and ~ 95.9%,
respectively.

Since the present PICP for all models appear to exceed the 95% confidence interval, we
can ascertain that all of the developed models tend to satisfy the requirement of the confidence
level with PIC'P > 95%. Notably, the DNN model has the highest PIC' P with ~ 96.4%, for
Coolum whereas PIN AW generated by the hybrid CELM-KDE, as well as the DNN, RFR,
SVR, LSTM and KNNR models are =~ 0.392, ~ 0.419, ~ 0.413, ~ 0.414, ~ 0.403, and =~ 0.449,
respectively. Even though PICP for DNN is high, the PIN AW value is somewhat higher at
~ 0.419. Based on PINAW criteria, we can conclude that the newly developed CELM-KDE
model is the best one with PICP > 95% and a smaller interval width (PINAW = 0.392).

To interpret the PI values that have an exceptional quality of predictions, one should also
expect a wide coverage probability with a shorter interval width and this could also mean
an excellent interval prediction results with a large value of PIC'P and a small value of the
resulting PIN AW

To fulfil the above, we now assess coverage probability and width of prediction interval
thoroughly by means of the F-value that integrates both the PIC'P and the PIN AW for all
present models. It is imperative to note that the F' — value generated by the proposed hybrid
CELM-KDE model far exceeds that of the DNN, RFR, SVR, LSTM and KNNR models with
~ 1.391, ~ 1.373, ~ 1.374, ~ 1.370, ~ 1.381, and = 1.341, respectively as shown in Figure [20]
With the highest value of F' — value, we can ascertain that the hybrid CELM-KDE model has
outperformed the benchmark models and this occurs for all of the present substations. We can
therefore state with confidence that the proposed hybrid CELM-KDE model is able to generate
daily electricity demand prediction intervals with a much greater quality.

Finally, we adopt the Winkler score (1¥.S) and the Average Relative Interval Length (ARIL)
of the Pls generated by all models at the four substations, as reported in Table [11]

At the 95% confidence level, the proposed hybrid CELM-KDE model registered the lowest
value of WS and ARIL. For individual stations, we note these results: Coolum: WS ~ 147.33
& ARIL = 0.27, Cornubia: WS = 80.36 & ARIL =~ 0.38, Caloundra: WS =~ 302.49 &
ARIL =~ 0.28, and Lawnton: WS =~ 185.34 & ARIL =~ 0.27), and this demonstrates that
the objective model certainly outperforms the comparative prediction models. In fact, the
PIs for the daily G under 95% confidence level for different models are shown in Figure
where the hybrid CELM-KDE model is seen to be relatively superior to that of other models
with a low value of CRPS and PINAW. Compared with alternative benchmark models, the
proposed hybrid CELM-KDE model performs better at the 95% confidence levels and therefore
can deliver more detailed prediction information on electricity demand for the present study
sites.

In respect to load prediction models developed using various sources of data that can perhaps
apply the proposed hybrid CELM-KDE model, Figure shows a schematic that outlines
different variables like plug-in electric vehicles, roof-top solar, electricity end-use trends, weather
conditions, days of the week as well as economic trends. Forecasting electricity demand is
essential to ensure a reliable power supply for present and future consumers so including such
diverse datasets could further increase the practicality of the proposed hybrid CELM-KDE
model. In general, load forecasting assists in power system operation for efficiently managing
the bulk electric system, strategizing the necessary upgrades, and delivering dependable service
at optimal costs. These predictions also support operators in making informed decisions for
short-term market strategies and the long-term infrastructure investments. To predict consumer
electricity needs, energy planners should analyze data from various sources, as illustrated in
this figure. While we have currently focused on weather parameters, a future study can also
plan to incorporate the remaining five parameters in future studies.
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Figure 19: Interval prediction performance based on the PICP and the PIN AW criteria applied
to the proposed hybrid CELM-KDE ws. the benchmark models.

5. Conclusions and Research Future Work

This article has presented a new deep learning hybrid framework using Convolution Neu-
ral Network and successfully integrated with Extreme Learning Machines and Kernel Density
Estimation approaches to create a hybrid CELM-KDE model that was able to predict daily
electricity demand for stations in southeast Queensland. In the modeling of electricity de-
mand, prediction intervals were calculated to measure the uncertainty in predicted values, so
that power system operators, electricity energy utilities, and wholesale electricity markets could
gain a better understanding of future predicted electricity demand risks. A number of well-
known deep learning methods, such as DNN, RFR, SVR, LSTM, and KNNR, were evaluated
against multiple years of electricity demand profiles in order to verify the overall superiority of
the objective model.

This study has specifically generated a robust CELM-KDE model to estimate deterministic
(point-based) electricity demand predictions. A combination of climate variables (temperature,
humidity, solar radiation, evaporation, etc.) was added to the CELM-KDE model’s inputs for
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Figure 20: Interval prediction performance based on F' — Value generated by the proposed hybrid
CELM-KDE wvs. the benchmark models.

the analysis of sequential demand data, and partial autocorrelation and mutual information
function tests were used to determine the length (lagged) of electricity demand sequence. Also,
to build a two-stage framework to reliably predict daily electricity demand, the prediction
errors were fitted using the Kernel Density Estimation method in order to acquire Prediction
Intervals. Through the use of a variety of assessment criteria and diagnostic plots, we were
able to thoroughly evaluate the performance of the hybrid CELM-KDE model over time. The
results of this study are summarised as follows:

e Based on the low relative forecasting errors and high-performance metrics, the proposed
hybrid CELM’s accuracy is proven to be superior to competing models. The hybrid
CELM-KDE model generated the lowest absolute and relative errors in its testing phase
for all four substations, as well as the lowest uncertainty at 95% confidence t-Statistics
and Thiel’s Inequality Coefficient, while achieving the highest correlation coefficient, Will-
mott’s, Nash and Legates Index, and Kling-Gupta efficiency.

e The proposed hybrid CELM-KDE model outperformed all benchmark models, as mea-
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Plug-In Electric Vehicles

Charging electric  vehicles consumes
substantial electricity, sometimes equal to
half a home's power usage, and as EV
adoption grows, 1t exerts a mnotable
influence on the grid, prompting electricity
planners to include their proliferation in
their forecasts.

Roof-top Solar

Solar panels and other customer-side
generation systems can lessen grid
electricity consumption, and understanding
this capacity 1s crucial for -electricity

Weather Condition

Weather conditions significantly influence
short-term load forecasts, as heat waves
and extreme cold increase power demand,
while mild spring and fall weather reduces
it.

Day of the Week

Load forecasts vary between weekdays,
marked by high electricity demand due
to work and school activities, and
weekends or holidays, characterized by
lower usage with many businesses
closed.

planners in creating precise forecasts.

End-Use Trends Economic Trends
In long-term planning, analysts assess the quantity
and efficiency of electric-powered equipment, such
as HVAC systems, lighting, and major appliances
like water heaters and refrigerators, currently mn use
and anticipated installations.

For long-term forecasts, planners assess the economy,
‘where the electricity demand of commercial and
industrial sectors, especially manufacturers with
electricity-intensive machinery, varies sigmficantly
between a robust and sluggish economy.

Figure 21: Schematic diagram of the load prediction model that can be developed using various
sources of data.

Table 11: Probabilistic prediction at 95% confidence level using Winkler Score (WS) and Average
Relative Interval Length (ARIL) computed in the testing phase of the proposed CELM-KDE and the
benchmark models.

Sub-Stations | Predictive Model Mmc;(;’el T’erforme;rll;(; LMetrlcs
CELM 147.33 0.27
DNN 159.13 0.29
Coolum RFR 157.10 0.29
SVR 154.36 0.29
LSTM 157.30 0.28
KNNR 163.83 0.31
CELM 80.36 0.38
DNN 110.14 0.52
Cornubia RFR 89.59 0.41
SVR 88.19 0.43
LSTM 88.73 0.43
KNNR 94.03 0.48
CELM 302.49 0.28
DNN 358.73 0.32
Caloundra RFR 323.14 0.30
SVR 314.99 0.28
LSTM 333.71 0.30
KNNR 386.46 0.35
CELM 185.34 0.27
DNN 204.47 0.30
Lawnton RFR 215.03 0.31
SVR 248.32 0.36
LSTM 210.22 0.30
KNNR 231.93 0.36

sured by the Promoting Percentage Error, Diebold-Mariano, and Harvey—Leybourne-Newbo
statistics. Moreover, histograms and box plots of prediction error as well as their Kernel
Smoothing Density Function and Empirical Cumulative Distribution Function plots in
the testing phase highlighted the superiority of the proposed hybrid CELM-KDE model.
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Figure 22: Electricity demand prediction interval under 95% confidence level generated by the
proposed hybrid CELM-KDE model for different models (For Coolum sub-station).

e Thorough analysis of metrics such as global performance indicator, directional similarity,
or other diagnostic plots compared predicted and observed electricity demand showed
that the the proposed hybrid CELM-KDE model outperformed the comparable DNN,
RFR, SVR, LSTM and KNNR models for daily prediction horizons.

To fully evaluate the proposed hybrid CELM-KDE model, an analysis of the quality of
electricity demand predictions generated in respect to the comparison models, which in fact
also assessed the prediction intervals, used the Winkler Score, Normalized Mean Prediction In-
terval Width, Prediction Interval Coverage Probability, and F-values. These probability-based
indicators attained the the lowest value to ascertain the efficacy of the proposed CELM-KDE
model. For example, the Winkler Score and the Average Relative Interval Length registered the
lowest value for the proposed CELM-KDE model compared with five other benchmark models
for all four study sites.

Among the probability-based indices that evaluated the quality of electricity predictions,
the ' — value also assessed the two mutually constrained factors including the Prediction
Interval Coverage Probability and the Normalised Mean Prediction Interval Width. According
to our findings, the objective CELM-KDE achieved better overall results proving its skill in
enhancing the accuracy of electricity demand interval predictions. The proposed CELM-KDE
model also has a superior ability to measure the underlying non-determinacy character of
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electricity demand due to lower magnitude of Winkler Score and Average Relative Interval
Length and relatively high magnitude of the F-value for all tested substations.

According to the analysis and results presented, the proposed hybrid CELM-KDE model
appears to have a strong potential to accurately predict the daily electricity demand, at least
in the context of four sub-stations (i.e., Coolum, Cornubia, Caloundra, Lawnton) in south-
east Queensland. This framework was also able to handle short-and long-term relationships in
electricity demand data as well as analysing the nonlinear associations and complexities with
weather/climate variables that affect the electricity demand patterns. However, some limi-
tations can be also find in this research: The present study has utilized a limited set of 11
climate-based predictors (see Table 2) to provide features impacting daily electricity demand.
These variables were not monitored currently with electricity demand at tested sub-stations
but generated later by gridding methods used in Scientific Information for Landowners (SILO)
database, which could add uncertainties or errors in hybrid CELM-KDE model. A future study
could therefore add a greater pool of variables from real-time weather observations made at
the tested sites to improve the model’s accuracy, as well as adding other variables to retrain
the hybrid CELM-KDE model. Another limitation of the present study is the daily time-step
used, which is a medium term prediction but is certainly limited in terms of providing more
real-time, short-term predictions to manage the increased demand, black-outs or power failures.
Therefore, a future study could retrain the hybrid CELM-KDE model at shorter-term time in-
tervals such as hourly, or sub-hourly to construct a real-time predictive system for management
of electricity demand. This could be achieved by using real-time weather observations such as
European Centre for Medium-Range Weather Forecasts (hourly, 3-hourly, 6-hourly) as well as
medium range (up to 15 days ahead), extended range (up to 46 days ahead) and long range
(up to one year ahead) timescales [105].

Regarding the limitations in the proposed hybrid CELM-KDE method, we acknowledge
that predictor (climate) and target (electricity demand) datasets used could have non-linear
and non-stationary stochastic patterns, including jumps, periodicity, trends etc, which affects
the overall ability of the CELM-KDE model to predict accurately. In a future study, this method
could improved by incorporating a data decomposition method such as wavelet transforms and
improved ensemble empirical mode decomposition [I06] to split non-linear and non-stationary
stochastic patterns prior to feeding them into the hybrid CELM-KDE model, which has been
shown to improve the overall accuracy of machine learning models.

Since the proposed hybrid CELM-KDE model relies solely on the historical data, future
studies may readily adopt the method to predict the electricity demand for a variety of de-
mographic groups where different patterns of electricity use are noted. However, such future
studies should retrain the model with more diverse datasets from those demographic regions to
provide a robust predictive framework. In future, we will also examine the trends in electricity
demand using a variety of nonlinear exogenous characteristics such as climatic and economic
variables. Finally, to improve interval prediction’s performance on both one-step and multi-step
predictions, our future studies can also combine interval prediction with multi-step electricity
demand prediction.

As a final note in respect to further applications, the present study has trained the hybrid
CELM-KDE model only for electricity demand prediction by integrating convolution neural
networks with extreme learning machine approaches and adopting a probabilistic prediction
approach that can support energy companies in their regular operations. As we have used the
Kernel Density Estimation method to enable probabilistic predictions with no prior assump-
tions to estimate the prediction internal (PI) and provide probability density functions for the
predicted errors, the proposed method can be used in other areas such as electricity price pre-
dictions, solar, or wind energy simulations, including other time-series predictions where: (i)
historical datasets of these target variables have repeating patterns that can be captured by re-
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training the present CELM-KDE model and (ii) including exogenous (or related variable) data
to provide added features such as real-time weather variables affecting electricity and other
energy parameters.

In respect to wider applications, there is also the possibility of retraining the hybrid CELM-
KDE model using other kinds of time-series variables such as stock market or financial analysis
and predictions, hydrological applications like drought or flood prediction, and even radio
communications areas where time-based message sequences can be transmitted. These wider
applications will no doubt require robust retraining of the model to provide enough features
for the model to predict accurately and resulting predictive errors to be minimised. These
applications will be beneficial to society, especially in decision-making sectors where accurate
models are needed by industry, policymakers, governments and other organizations.
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Appendix A. Acronyms

Appendiz A.1. Acronyms
Table provides the acronyms used in this paper.

Table A.16: Acronyms

Term \ Acronyms
Artificial Intelligence Al
Artificial Neural Network ANN
Autoregressive Integrated Moving Average ARIMA
CNN integrated with ELM CELM
Convolutional Neural Network CNN
Decision Trees DT
Deep Learning DL
Empirical Risk Minimisation ERM
Extreme Learning Machine ELM
Gated Recurrent Unit GRU
Generalized AutoRegressive Conditional Heteroskedasticity | GARCH
K-Nearest Neighbors KNN
K-Nearest Neighbors Regression KNNR
Kernel Density Estimate KDE
Long Short-Term Memory LSTM
Machine Learning ML
Mutual Information Function MIF
Partial Autocorrelation Function PACF
Prediction Interval PI
Probability Density Function PDF
Random Forest Regressor RFR
Recurrent Neural Networks RNN
SHapley Additive exPlanations SHAP
Scientific Information for Land Owners SILO
Structural Risk Minimisation SRM
Support Vector Regression SVR
South-East Queensland SEQ

Appendiz A.2. Hyperparameter Tuning

Figure shows the schematic of the Optuna hyperparameter optimisation method. In
this study, we harnessed the power of Optuna, a versatile and efficient hyperparameter optimiza-
tion framework. Optuna simplifies the intricate process of fine-tuning machine learning models,
offering a notable advantage. With its user-friendly Application Programming Interface (API)
and adaptive search algorithms, Optuna efficiently navigates hyperparameter search spaces,
resulting in quicker convergence and more optimal model configurations. Its seamless integra-
tion with popular machine learning libraries, support for parallel and distributed optimization,
and provision of visualization tools for straightforward analysis enhance its utility. Optuna’s
capacity to adaptively focus on promising hyperparameter regions, complemented by its ac-
tive community and ongoing development, positions it as a valuable tool for enhancing model
performance while conserving time and computational resources. Furthermore, considering our
use of a cutting-edge hyperparameter selection algorithm, one could argue that an ablation
study may appear redundant or unwarranted. This advanced method has demonstrated its
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Figure A.24: Optuna Hyperparameter optimization framework.

exceptional ability to automatically pinpoint the most optimal hyperparameter configurations
for our machine learning models. It conducts systematic, efficient exploration of the hyperpa-
rameter search space, yielding high-performing setups while substantially reducing the manual
effort typically associated with hyperparameter tuning. This might suggest that conducting an
ablation study, which traditionally involves the labor-intensive process of individually modify-
ing or removing specific hyperparameters or components to assess their impact, offers limited
benefits. Nonetheless, it is crucial to acknowledge that although advanced hyperparameter
optimization techniques excel at identifying robust configurations, they may not reveal insights
into the intricate workings or nuanced interactions among individual hyperparameters. Thus,
considering the potential value of an ablation study for gaining a more granular understanding,
we may contemplate its inclusion in future research endeavors.
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