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Abstract

Inaccurate modelling of battery energy storage systems (BESSs) leads to significant finan-
cial and technical challenges, undermining investment confidence in large-scale BESS projects
and other applications and hindering global carbon reduction efforts. This paper underscores the
critical need for precise battery modelling using a thorough evaluation of experimental data to il-
lustrate the limitations of inaccurate battery models in remaining energy estimation. In addition,
advanced simulation studies are conducted using actual residential data to demonstrate the nega-
tive consequences of power mismatch and economic returns using these inaccurate models. Key
discoveries highlight how accurate battery models can improve the accuracy of techno-economic
evaluation and mitigate investment risks. This is demonstrated using a novel and computation-
ally tractable energy management system (EMS) architecture. Future research should focus on
developing standardised modelling protocols and fostering collaboration among manufacturers,
researchers, and operators to bridge existing knowledge gaps. By increasing public awareness
about the significance of accurate battery modelling and promoting interdisciplinary coopera-
tion, this work aims to drive improved decision-making and accelerate the adoption of reliable,
efficient BESS operations in the global transition to sustainable energy systems.
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1. Introduction

The global push toward electrifying various energy demand sectors, driven by concerns over
climate change and energy efficiency, underscores the critical role of energy storage in general
and electrochemical batteries in particular. Despite significant progress in improving these tech-
nologies, batteries remain a costly component in this transition [1, 2]. As demand for electricity
grows with electrification, particularly in transportation and industrial sectors, understanding and
modelling battery behaviour (e.g., remaining energy of the battery or state of health (SoH)) be-
comes paramount during planning and operation for economic viability analysis and operational
efficiency, which is summarised in Fig. 1 (a).

In transportation, where batteries power increasing numbers of zero-emission vehicles [3],
and in industries requiring energy storage to meet fluctuating demand and integrate renewables,
the need for batteries is evident. On the other hand, grid-scale batteries, with their rapid re-
sponse and flexibility [4], are crucial to managing the variability of renewable energy, ensuring
grid stability, and facilitating widespread adoption. Various critical applications of batteries are
summarised in Fig. 1 (b). However, the economic viability of battery projects can be uncer-
tain because of the high capital cost, replacement costs, and low profit margins, which led to
government subsidies to mitigate risks.

In a rapidly electrifying world, where batteries serve as cornerstones in the energy transition,
harnessing their full potential is dependent on comprehensive feasibility and techno-economic
assessment to guide decision-making and ensure economic and operational success. To that
end, accurate battery modelling is crucial not only in project planning but also in operational
optimisation. Whether in electric vehicles for range estimation or in stationary applications to
prevent overcharging and overdischarging, a precise estimation of the state of charge (SoC), SoH,
and dynamic behaviour is indispensable [5, 6]. The importance of adopting extended battery
models has recently been identified as a critical challenge in achieving the full value of the
system in planning, market, and operational decision-making [7].

In recent years, the limitations of inaccurate BESS models have been identified in research
studies and a few computationally efficient battery models have been proposed to improve the
remaining energy estimation accuracy for optimal energy dispatch problems with BESS. In [8],
the authors proposed a non-ideal linear Li-ion battery model that considers the nonlinear dy-
namics of the batteries. In their work, the energy mismatch is observed in comparison with
other ideal conventional Li-ion battery models. Later, this work was extended in [9] considering
the degradation costs of the battery. The simulation results show that the proposed non-ideal
model can reduce the error of BESS power mismatch from 13.3% to 3.7%. More related works
are presented in [10, 11, 12, 13], where the internal chemical and thermal dynamics of Li-ion
batteries are considered to formulate an accurate model for optimal energy dispatch problems.
However, considering the complexity of multi-physics modelling for batteries, these solutions
can be impractical in real-world operation. In addition, the electrochemical, thermal, and degra-
dation mechanisms of batteries need further detailed modelling to fit simulation studies for long
operating cycles. For example, the ohmic overpotential of batteries is often modelled by a con-
stant internal resistance to reduce the nonlinearity of the model. The thermal and electrochemical
dynamics of the batteries are often not considered, and the degradation of the batteries is repre-
sented by a fitted 1-D curve without considering the actual operation of the battery in the past.
These simplifications undermine the accuracy and reliability of these models. Meanwhile, the
effect of ambient temperature is not taken into account in the majority of the works. In envi-
ronments with elevated temperatures, the internal power consumption of the BESS during high-
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Figure 1: The role of battery energy storage systems (BESSs) in the clean energy transition. (a) The roles of accurate
battery models in the planning, design, scheduling and operation stages of different types of electrification projects. (b)
Accurate battery modelling brings multiple economic and quality benefits in grid-level or residential-level energy storage
projects.
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power operation regimes can be more significant, and there is a risk of emergency shutdowns
of the BESS or insufficient power output regulated by the battery management system (BMS).
These drawbacks result in the low fidelity of these models. Most importantly, there is a lack of
compelling validation of the models using real BESS data or widely accepted battery models.
Critical battery states, e.g., remaining energy or temperature obtained from simulations or actual
BMS, are important to demonstrate the accuracy of these proposed models. For example, during
the late period of the charge/discharge process, more dramatic variations in efficiency, as a result
of the increase in overpotentials and temperature, lead to a lower estimation accuracy. Inaccurate
results in remaining energy estimation and power mismatch could also occur by these models
when the BESS operates under extreme ambient temperature and non-intermediate SoC ranges.
Most importantly, the inaccurate economic benefits and value assessment of BESS caused by
these modelling approaches are not discussed in these works. This could result in significant
financial losses due to the unawareness of operators and investors of these issues.

In this paper, we show the limitations of simplified battery models, which could result in sig-
nificant discrepancies in estimating the remaining energy for four common battery technologies.
In addition, we shed light on the impact of limited battery performance information and the use
of simplified battery models, which could lead to inaccurate estimation of technical and financial
performance, as evidenced in the residential energy arbitrage application in this study. Most im-
portantly, a novel and computationally tractable energy management system (EMS) architecture
is proposed to overcome the limitations in simplified battery models by incorporating accurate
multi-physics or data-driven battery models.

The rest of the paper is organised as follows: Section 2 explains the definitions of the dif-
ferent remaining energy estimation models and identifies the limitations within these simplified
models. Section 3 shows the inaccuracy in remaining energy estimation when using these sim-
plified models, as illustrated by experimental data. Section 4 demonstrates the adverse outcomes
resulting from inaccuracies in techno-economic evaluations within optimal energy dispatch sce-
narios. Lastly, a novel and computationally tractable framework is proposed to improve battery
energy dispatch performance and achieve high accuracy.

2. Definitions of remaining energy in batteries

SoC is a universal metric for different types of batteries to indicate the remaining capacity
inside a battery. SoC estimation is critical to prevent battery overcharging or over-discharging,
and is also used to manage battery power to prevent thermal runaway and mitigate excessive
degradation to extend useful life and ensure safe operation [5, 6]. From the battery management
perspective, the SoC is the most important indicator for accurate remaining capacity estimation.

To understand the concept of SoC, it is essential to understand the principles of how batteries
function. Battery operation relies on the migration of active ions between the anode and the cath-
ode, which facilitates charge and discharge processes that produce a chemical potential essential
for extracting or storing electricity. To measure the capacity in a battery considering the mech-
anism of energy conversion, Faraday’s laws of electrolysis are used to describe the relationship
between the total charge from the active ions and the electric current. This law indicates that the
integration of the total charge change during battery operation can be approximately proportional
to the integration of current. In fact, for most commercial battery products, their coulombic ef-
ficiency is at a very high level (approximately 99%) [14]. This universal definition of SoC can
be mathematically represented neglecting the minor side reaction losses and capacity fading, as
follows:
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S oCt = S oC0 +

∫ t
0 Ic(t) dt

Cn
−

∫ t
0 Id(t) dt

Cn
(1)

where the Ic(t) and Id(t) are the charge and discharge current of the battery at time t, respectively.
Cn represents the nominal capacity of the battery in Ah. In numerous studies and tools focused on
battery SoC, including those related to battery scheduling in hybrid energy systems or the sizing
and design of battery energy storage systems (BESSs), the charge/discharge power profiles are
used as the primary input parameters. This is primarily due to the complexity of modelling
battery voltage and other operational mechanisms (e.g., charge loss, auxiliary equipment power
consumption, etc.). For instance, battery voltage has a nonlinear relationship with the SoC, hence
formulating it in an optimisation problem can make it intractable and unsolvable in many cases.
As a result, a new definition of energy stored in the battery has evolved over the years, which is
referred to as the state of energy (SoE), and is mathematically defined in [15], as given below:

S oEt = S oE0 −

∫ t
0 Pd(t) dt

En
(2)

where Pd(t) is the discharge power at time t and En is the nominal energy in kWh or Wh. The
SoE formulation here is used to estimate the remaining energy during discharge. To extend its
application to the charging processes, another universal definition considers the charge power
Pc(t) at time t as follows:

S oEt = S oE0 −

∫ t
0 Pd(t) dt

En
+ ηr

∫ t
0 Pc(t) dt

En
(3)

The definition in Eq. (3) uses the same nominal energy as Eq. (2) with a constant round-trip
efficiency ηr. These values can be conveniently found or derived using the information on the
battery datasheet. However, relying on the nominal energy and constant round-trip efficiency
could potentially lead to significant errors in estimating the remaining energy inside a BESS. In
practice, the remaining energy estimation results using Eq. (3) potentially yield significant dis-
crepancies compared with accurate estimation results using SoC measurement by the BMS. The
reason is that these values are normally measured for a specific operational condition (e.g., con-
stant power/current regime, normal room temperature environment), namely ideal conditions.
As such, any changes in the battery operation (e.g., partial charge and discharge) and thermal
dynamics of the BESSs will consequently cause substantial variations in their available energy
and efficiency. In this case, the BESS is operated under a non-ideal condition in which the ambi-
ent temperature and operational power may perform significantly differently from the specified
operational condition. In [7], the authors emphasise that achieving an accurate estimate of the re-
maining energy in a BESS is crucial to realise their full value. Inaccurate estimation can severely
influence the operation of BESSs in many aspects that will cause financial losses, financial mis-
match (inaccurate BESS economic benefits/revenue estimation) and unsatisfied consumers and
investors.

3. Investigation of remaining energy estimation error in the mainstream BESS technologies

To show the remaining energy estimation discrepancies using SoC and SoE definitions under
different operational conditions, we selected four distinct battery technologies, three Li-ion bat-
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teries, namely A123 Systems ANR26650m1-B, Panasonic NCR-18650B, LG Chem INR21700-
M50, and a 5 kW/3 kWh (rated) vanadium redox flow battery (VRFB) system, shown in Table 1,
for which extensive data was available online or through our collaborators [16]. In particular,
the experimental data for the three Li-ion batteries are obtained from Stanford Energy Control
Laboratory [17], and the data for the VRFB system is obtained from our collaborators [16]. The
experiments are carried out under different galvanostatic discharge currents while maintaining
an ambient temperature at 25◦C. Fig. 2 shows the SoE and SoC results obtained based on the
nominal capacity values in Ah and the nominal energy values in Wh based on the information
given in the datasheets using Eq. (2) and Eq. (1) respectively, which are shown in Table 1.

Table 1: The specifications of the four batteries in this study [16, 18, 19, 20]

Panasonic
NCR-18650B (NCA)

LG Chem
INR21700-M50 (NMC)

A123 Systems
ANR26650m1-B (LFP) VRFB

Nominal capacity Cn (Ah) 3.35 5 2.5 60

Nominal voltage (V) 3.6 3.63 3.3 50

Nominal energy En (Wh) 12.1 18.2 8.3 3000

The results of the four galvanostatic discharge tests indicate that the disparity between SoE
and SoC becomes more apparent as the operational time and discharge current increase. This
discrepancy is attributed to variations in operational conditions that influence the losses incurred
within the battery. Alternatively, variations in battery operation efficiency contribute to inaccu-
racy in estimating the remaining energy using a simplistic SoE method from Eq. (2). As a result,
the efficacy of this simple SoE model in precisely estimating the remaining energy is contingent
on the operational environment closely resembling the specific testing conditions under which
these typical performance metrics were obtained. For instance, when faced with different opera-
tional conditions, as evidenced in the case of the LFP, NCA, and NMC batteries, and the VRFB
in Figs. 2 (a-d), where their nominal energy is evaluated using these typical performance metrics
or under ideal discharge conditions (normally low current discharge or neglect the voltage vari-
ations), simple SoE models cannot accurately estimate the remaining energy. This demonstrates
the non-ideal outcomes in estimating the remaining energy that we have postulated. Moreover,
from all the error bars in the last column of Figs. 2 (a-d), we can observe that the discrepancies
tend to increase as the operational conditions become more non-ideal.

Note that the Li-ion batteries chosen for our study are single-cell devices, allowing applied
discharge currents to exceed 3C. However, in most medium- or large-scale BESSs, the allowable
maximum discharge current managed by the BMS is generally not greater than 2C. For these
BESSs, we expect to see a discrepancy caused by variations in the efficiency of the charging and
discharging process and discharge energy due to the change in battery power and degradation
level, the power consumption of the auxiliary equipment (for thermal management, power man-
agement, etc.), self-discharge losses, variations in environmental temperature, and other potential
factors with impact on round-trip efficiency. Overlooking these factors in the remaining energy
estimation methods can result in technical issues and financial mismatches in the optimal BESS
dispatch problem. The next section investigates this impact in detail.
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Figure 2: The SoC and SoE profiles of four BESS technologies. Three Li-ion batteries (LFP, NCA, NMC) are tested
in 25◦C controlled chamber under galvanostatic discharge currents of 1C, 2C and 3C until they reached the cut-off
voltage limits [17]. Also, a 5 kW/3 kWh (rated) VRFB system was tested at 25◦C room temperature under galvanostatic
discharge currents of 60 A, 80 A, and 100 A until the cut-off voltage limit was reached. The SoC and SoE are derived
using Eq. (1) and Eq. (2), and two error metrics, namely absolute error (AE) and absolute cumulative error (ACE), are
adopted to quantify the discrepancy between SoE and SoC values. The end-point ACE and AE in the last column are the
values at the last timestep of each discharging process. Each row shows the SoE, SoC and error profile results obtained
for one of the batteries in the mix: (a) A123 Systems ANR26650m1-B. (b) Panasonic NCR-18650B. (c) LG Chem
INR21700-M50. (d) 5 kW/3 kWh VRFB system.
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4. Energy estimation and optimal BESS operation: A case study

Non-ideal operation of BESS often leads to notable fluctuations in efficiency, primarily driven
by variations in charge/discharge power necessary to meet system-level operational demands.
This observation is supported by the outcomes of our analysis shown in Fig. 2 (d) for a VRFB.
However, it is crucial to quantify the magnitude of this impact at the system level, e.g., inaccurate
remaining energy estimation inside the BESS and inaccurate BESS economic benefits estimation
outcomes (financial mismatch) incurred during battery asset operation. Considering data avail-
ability and operational complexity, we decided to run our simulation study for 40 residential cases
with rooftop PVs and batteries from the Australian Capital Territory (ACT), Australia using the
NextGen dataset [21]. These 40 residential cases are randomly selected from a large part with
20 cases in July 2022 and 20 cases in February 2023. These cases have a range of load demands
and PV solar generation profiles requiring different battery operations during typical summer and
winter periods. We used one-day load demand and PV generation profiles for our analysis. We
assumed that all the users in these cases own a 5 kW/10 kWh VRFB system on their premises,
and perfect load demand and PV generation prediction are available to reduce the complexity of
the study and keep our focus on the financial outcome related to battery energy estimation. We
assumed that each household owns a home energy management system (HEMS) that operates
the battery and rooftop PVs to minimise the electricity cost (in Appendix C). The round-trip effi-
ciency of this 5 kW/10 kWh VRFB system in the SoE model is assumed to be 70% based on the
ideal charge/discharge tests (in Appendix B), which are used in the decision-making processes
of the HEMS. The simulation results are shown in Figs. 3 (a-e) for one of the users. Figs. 3 (a-b)
shows the load and PV generation profiles, the time of use (ToU) tariff and the solar feed-in tariff
(FiT). In this setup, the HEMS solves an optimisation problem for 24 hours ahead at 5-minute
interval, and the commands are transmitted to the battery BMS to follow. We ran another simu-
lation study using the command from HEMS based on a multi-physics model (in Appendix A)
to simulate the actual battery operation. Accurate SoC estimation results are adopted for each
of the cases as the real-time remaining capacity estimation trajectory. The estimated remaining
energy in SoE is obtained from the HEMS by Eq. (3) before the BESS operation.

It can be observed from Fig. 3 (c) that the remaining energy of the BESS estimated by the
HEMS is considerably different from the actual SoC with a peak absolute error of about 8%. The
actual round-trip efficiency is 66.1% versus the ideal efficiency of 70% due to the standby power
consumption of the BESSs, side reactions, and overpotential losses. As a consequence, the dis-
crepancy between the estimated and actual measurement increases with the operation time, as
can be seen in Fig. 4 (a) for 40 cases. Furthermore, the actual and scheduled BESS power mis-
match is shown in Fig. 3 (d) for a single user, where the BESS optimal power has not been
fully realised. Finally, the financial impact of the power mismatch, as a result of the error in the
remaining energy estimate, is shown in Fig. 4 (b) for all cases. It can be seen that the HEMS
overestimated the economic benefits when using a constant round-trip efficiency obtained from
ideal test conditions. This critical issue also tends to occur in other BESS technologies such as
Li-ion batteries during actual operation. As a result, there is an inevitable mismatch between
the actual economic benefits of BESSs and the estimated benefits by HEMS, which can be quite
significant from the simulation results. Furthermore, in [23], Lin et al. presented a compre-
hensive study that reveals multiple critical factors influencing the efficiency of Li-ion batteries,
mainly temperature, current, voltage, and capacity degradation. A previous work by Noyan-
bayev et al. in [24] analysed a grid-connected BESS, and found that the round-trip efficiency
of the Li-ion BESS could have a maximum difference of around 6% in different constant power
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Figure 3: The simulation results obtained for a 5 kW/10 kWh VRFB system from an optimal BESS energy dispatch
problem for a single unidentified residential user in ACT, Australia on February 16th, 2023 as an example. In this
simulation study, a time of use (ToU) electricity tariff and a solar feed-in tariff (FiT) from Origin Energy in ACT, Australia
are adopted [22]. The actual PV generation and load profiles are obtained for this residential user. The SoC and SoE
mismatch and their impact on operation cost are calculated. Perfect forecast data is assumed here to focus the simulation
studies and analysis on the impact of SoE inaccuracy. The SoC values are scaled based on the upper and lower allowable
system SoC limits (10-95%) managed by the BMS, to 0-100% to indicate the available remaining capacity. In this figure,
we see: (a) the load and PV generation profiles of the anonymous user, (b) the ToU tariff and solar FiT data, (c) the
estimated SoE, real-time SoC profiles and the absolute error (AE) and absolute cumulative error (ACE) between the
estimated SoE and the real-time SoC in daily operation, (d) the BESS power schedule and the actual power of the BESS,
and (e) the ambient temperature and VRFB temperature profiles.

charge/discharge operational regimes (60-240 kW) from 0%-100%-0% SoC range. These stud-
ies illustrate that using a constant value for efficiency is not sufficient to accurately measure the
actual performance of a Li-ion BESS under various conditions. Moreover, considering usable
energy and degradation of BESSs under different charging and discharging conditions is neces-
sary to ensure accurate remaining energy estimation and techno-economic evaluation outcomes.
In Fig. 5, we summarise the potential factors that contribute to the inaccurate remaining energy
estimation and the results of the techno-economic evaluation at different stages and outline the
potential consequences, which can result in unsatisfied customers and investors.

BESS industry stakeholders have made significant contributions to the advancement of en-
ergy storage technologies, and addressing the above challenges is essential for customers and
users to evaluate the performance and economic value of BESS precisely. These issues appear
to be solvable considering the actual efficiency of BESSs. Upon closer examination, three main
concerns emerge: (1) limited information availability to fully analyse the actual performance of
BESS under different operational conditions, (2) lack of comprehensive experimental data for
accurate model formulation, and (3) insufficient knowledge or tendency to over-simplify battery
models among stakeholders. In Table 2, we list information on six popular commercial BESS
products from their product datasheets. Although generic information related to the efficiency
or usable energy available in battery datasheets can provide a preliminary understanding of the
BESS, operators and designers can benefit from more practical information to form a comprehen-
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Figure 4: The simulation results for 40 unidentified residential cases from an optimal BESS energy dispatch problem in
ACT during July 2022 and February 2023. The SoC and SoE mismatch and their impact on operation cost are calculated.
The processes and assumptions are identical to the single unidentified residential case analysis as noted in the caption
of Fig. 3. (a) the percentage ACE between the estimated SoE and the real-time SoC for all cases, and (b) the estimated
and actual economic benefits of the VRFB system for the 40 residential cases, and the actual round-trip efficiency of
the VRFB system for a day along with the absolute percentage error (APE) between the estimated and actual economic
benefits for all cases.
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degradation.

Real battery operation environment
O Ambient temperature could vary substantially.
O Battery capacity reduced due to cyclic and calendar degradation.
O Self-discharge losses and auxiliary devices power consumption.
O Batteries are charged/discharged at high powers/currents.

Consequences
O BESS scheduled/dispatch 
power mismatch.
O Low demand-side 
flexibility and stability.
O Financial mismatch.

BESS power/energy mismatch

Figure 5: The underlying factors that cause the performance discrepancy between the ideal and real operational environ-
ments and the consequences.

Table 2: Examples of the BESS performance metrics from the product datasheet

No. Type Test conditions Efficiency & Usable energy Ref.

1 Li-ion 3.3 kW charge & discharge power at
25◦C

90% (AC), 13.5 kWh [25]

2 Li-ion 100% depth of discharge (DOD), 0.2C
charge & discharge at 25◦C

Not available, 6.4–25.6 kWh [26]

3 Li-ion 100% DOD, 0.2C charge & discharge at
25◦C

≥95%, 5 kWh (DC) [27]

4 Li-ion 95% DOD at 25◦C Not available, 9.3 kWh [28]

5 Li-ion Not available Not available, 7.8 kWh for each module [29]

6 VRFB 5.6 kW, 7.2 kW, 10 kW, 12 kW, 14 kW
charge & discharge power

76–84%, 28–45 kWh
(efficiency & discharge energy under different
power regimes)
77% nominal efficiency (DC, with pump
losses)
72% nominal efficiency (AC)
40 kWh rated energy

[30]

sive understanding of the actual performance of the system, which is essential for precise BESS
sizing, effective planning, and optimal operation scheduling. For example, the usable energy and
actual efficiency of BESSs are essential performance indicators, which may vary depending on
operational scenarios and ambient temperature conditions. In addition, factors such as capacity
deterioration and other forms of degradation are crucial mechanisms that must be considered.
Furthermore, the limited experimental analysis of BESS systems is another critical factor that
restricts the development of accurate battery models to improve BESS operation. Additional
information is required from experimental or field operational data analysis of these BESSs to
estimate the performance metrics of the BESS products under actual operation. We also see
a general lack of understanding of SoC and SoE in the academic literature. Consequently, in
almost every related work in the literature, the definitions of SoC and SoE are confused with
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the common practice of referring to SoE as SoC. Moreover, the variations in the efficiency of
batteries are generally not considered, and the definition of remaining energy in the BESS is rel-
atively vague. In addition, these simplified models for energy management studies neglect many
operational mechanisms within BESSs which are important for precisely simulating their actual
dynamics, as introduced in Section 1.

We regard the proposition of simplified numerical models as generally challenging and im-
practical for accurately estimating the remaining energy in BESSs. It will require continuous
monitoring of voltaic efficiency and coulombic efficiency, which can be performed by non-linear
observers and machine learning methods during battery operation [31]. However, these sophisti-
cated models require substantial computational resources to solve optimal energy dispatch prob-
lems; hence, they become computationally impractical in real-world applications. Additionally,
constructing precise numerical models necessitates an in-depth understanding of the BESS op-
erational mechanisms, which originates from detailed knowledge of battery chemistry. Also,
high-quality BESS operational data and reliable experimental analysis are required to do this.
These factors potentially result in a lack of reliable and computationally efficient modelling ap-
proaches to tackle the problem of imprecise residual energy estimation in BESS over a long
period considering all the operational dynamics.

5. Introducing an iterative approach for optimisation-based applications as a potential so-
lution

Many battery applications introduced in Fig. 1 require an optimisation problem to be solved,
which means that incorporating the instantaneous voltage efficiency of BESS is impractical.
Therefore, the real question is how we can integrate highly accurate BESS models into the BESS
planning or operation optimisation problem to improve the accuracy of decisions. Here, we
propose a novel yet computationally tractable EMS architecture, presented in Fig. 6 (b), as op-
posed to the traditional EMS shown in Fig. 6 (a), which integrates the EMS with an accurate
and computationally efficient BESS model. This iterative EMS combines highly accurate BESS
models to provide an accurate round-trip efficiency to the decision-making process in the op-
timisation problem. The proposed solution is evaluated using 40 randomly selected residential
cases as indicated in the previous section. We anticipate that the proposed EMS will result in a
reduced discrepancy between the scheduled and actual battery power, as well as a more accurate
economic estimate compared to traditional EMS. The simulation results are presented in Figs. 6
(c-d), where the proposed method significantly improved the accuracy of the estimation of BESS
dispatchable energy as well as the estimated economic benefit to customers. The mean power
mismatch errors have decreased from 5.2% to 0.5%, whereas the mean financial mismatch errors
have reduced from 36.8% to 2.3%.

Another critical issue for BESS technologies is degradation, which results in the decay of
usable capacity, usable energy, and efficiency. The degradation mechanisms of BESS introduce
various levels of uncertainty in modelling, which could potentially lead to increased discrepan-
cies in both power and financial mismatch results for BESS. To rigorously validate the proposed
EMS architecture, we considered a realistic scenario for this 5 kW/10 kWh VRFB system with an
electrolyte volume imbalance of 80 L between the two tanks during operation. This not only re-
sults in degradation of the capacity of the VRFB system but also causes a change in the crossover
rate due to the more rapid variations in the vanadium ion concentration driven by diffusion. In
this case, the nominal energy capacity of the BESS is 8.8 kWh using the identical procedures
presented in Appendix B. To showcase the robustness of the proposed iterative EMS architecture
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Figure 6: The proposed iterative EMS approach and performance evaluation of 40 different cases in February and July
(perfect forecast data is assumed). (a) Schematic diagram of a conventional EMS without considering the operational
dynamics of the BESS. (b) Schematic diagram of the proposed iterative EMS that incorporates the actual round-trip
efficiency of the BESS. (c) The absolute percentage error (APE) between the scheduled and actual BESS power over
a day by two different EMS approaches (typical EMS in the literature and the proposed solution in this paper) of the
40 residential cases. (d) The APE between the estimated economic benefit and the actual economic benefit of the two
different EMS approaches for the 40 residential cases.

and to account for the real-world performance of a BMS that struggles to precisely measure the
remaining energy during BESS operation, the nominal energy for testing is assumed to be 8.5
kWh and remains constant throughout the operation of the iterative EMS. This value is estimated
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Figure 7: The performance evaluation of the iterative EMS method incorporating a highly accurate BESS model with
degradation to overcome increased uncertainties in conventional remaining energy estimation. The APE between (a) the
scheduled and actual BESS power and (b) the estimated economic benefit and the actual economic benefit, over a day by
two different EMSs for the 10 residential cases in February.

using a straightforward estimator based on a modification of Faraday’s law of electrolysis as:

E
′

n = En ·
min(Vn

hal f ,V
p
hal f )

Vhal f
(4)

Here, E
′

n is the nominal energy after degradation. Vn
hal f , V p

hal f and Vhal f are the half-system vol-
umes on the negative and positive half-system after the electrolyte transferal, and the electrolyte
volume in the tanks without electrolyte transfer, respectively. The initial round-trip efficiency
used in the proposed EMS architecture is 70%, and E

′

n is used to determine the optimal BESS
dispatch energy schedule until it satisfies the stop criteria shown in Fig. 6 (b). The performance
of the proposed iterative EMS architecture considering degradation for the 10 cases is shown
in Fig. 7. Note that in this new case study, we select 10 profiles in February 2023 which have
sufficient solar generation compared with the data in July 2022 so that the capacity of the BESS
can be better utilised (achieving a higher depth of discharge (DOD) range around or higher than
60%). In this case, the impact of battery degradation, capacity, and other factors on the actual
working performance of the BESS can be more significant, allowing for a thorough evaluation
of the proposed EMS. The simulation results obtained from the new case study also demonstrate
the effectiveness of the proposed iterative EMS in reducing power mismatch errors and finan-
cial errors (mean power mismatch error reduced from 4.0% to 0.6%, mean financial mismatch
error reduced from 21.4% to 1.6%). More importantly, the proposed method does not increase
the computational complexity of the optimisation problem while guaranteeing high accuracy in
estimating the efficiency of the BESS system. Most of the instances were solved in only two it-
erations, whereas the maximum number of iterations was only three. The average computational
time for each cycle is less than 10 seconds on an Intel(R) Core(TM) i7-10700 CPU of 2.90 GHz
with 16 GB of RAM, which can be further improved using more computationally efficient BESS
models (e.g., machine learning models). An alternative approach to handling computational de-
mands, if needed, is to host the optimisation problem within a cloud solution. This setup allows
the local HEMS to simply communicate with the cloud and obtain the optimisation results for
implementation.

To facilitate a better understanding of the strengths and challenges associated with popular
battery modelling types and their potential use within the proposed EMS framework, we have
gathered common battery models from literature in Table 3. This table outlines the strengths,
shortcomings, and feasibility of integrating them into the suggested iterative EMS framework to
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refine the techno-economic evaluation of BESS. Equivalent circuit models (ECMs) and mixed-
integer formulations are the most commonly used models in EMS-related literature, as mentioned
earlier, which generally lack the accuracy to facilitate EMS operation in determining the optimal
energy dispatch schedule. These simple models greatly impede the accuracy of the remaining
energy estimation, leading to numerous adverse effects detailed in Section 4.

Table 3: Mainstream battery modelling approaches and their strengths, shortcomings, and the practicality
of incorporating them in the proposed iterative EMS framework

Types Pros Cons Compatibility

Multi-physics
1. Generic and easy to adopt for identical
battery type.
2. Good battery state observability and
interpretability.

1. Requires additional consideration of
BMS operation.
2. Low robustness due to parameter
variations.
3. Could be computationally intensive
(High-dimensional finite element models).

✓

Data-driven
1. Universal for different battery types.
2. Computationally efficient to use after
training.
3. High accuracy without prior
knowledge of BMS and battery.

1. Low interpretability.
2. Extensive computational resources
are required for training.
3. Performance depends on the quality of training data.

✓

Equivalent
circuit

1. Good accuracy with adaptive observers
to tackle parameter variations.
2. Available to integrate with other
electric systems.
3. Computationally efficient for real-time
control and state estimation.

1. Low accuracy without accurate real-time sensors
for battery parameter identification.
2. Extensive analysis of high-quality
experimental data is required for model
formulation.

✗

Mixed-integer
formulation

1. Designed to be used in optimal BESS
energy dispatch schedule or optimal sizing
problems.

1. Extensive computational resources are
needed to find the optimal solution with
nonlinear formulation.
2. Linear formulation may significantly lack
accuracy.

✗

Despite the notable improvements achieved by the proposed EMS framework, there is still
a mismatch between the EMS schedules and actual battery operation. This is mainly due to
the lack of precise tracking of instantaneous voltage efficiency at each optimisation interval that
prevents the achievement of a near-zero estimation error of the remaining energy in real-time
operation. Addressing this complex issue requires additional research efforts via experimental
analysis and close cooperation with battery manufacturers and operators of BESS. However, the
effort required can differ greatly depending on the type of battery technology. For example, LFP
batteries, recognised for their stable voltage efficiency, yield fairly precise results even when a
constant round-trip efficiency is used in conventional SoE estimation techniques [17]. However,
for other Li-ion battery chemistries, such as NCA and NMC, which are characterised by poorer
thermal performance and higher internal resistance, additional considerations are imperative for
modelling nonlinear variations in voltage and temperature. Similarly, VRFBs, distinguished by
their high thermal stability but nonlinear overpotential characteristics, benefit from nonlinear
equations for overpotential modelling because of the stability of their voltage behaviour. These
diverse battery characteristics can assist operators in developing efficient and highly accurate
MILP (mixed-integer linear programming) models. This contributes to optimising BESS op-
eration and conducting more precise techno-economic assessments during the planning phase,
thereby substantially augmenting the revenue of BESS projects, reducing financial risks for in-
vestors, and helping policymakers make better decisions. Another issue is that the majority of
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data-driven models for batteries in the existing literature are only capable of real-time simulation
or estimation of a single battery’s state (e.g., SoC, SoH, etc.) while other system states (e.g.,
voltage, current, temperature, etc.), may not be available but are required by the proposed it-
erative EMS framework which requires accurate and predictive multi-output estimations. This
emphasises the necessity of developing multi-output models that can accurately simulate BESS
operation based on scheduled operational inputs (e.g., temperature, power load profiles, initial
SoC, etc.). These models should be capable of precisely predicting multiple output parameters
over the optimisation time horizon (e.g. SoC, voltage, active species concentration, etc.). Nowa-
days, physics-informed machine learning approaches have gained significant traction, which can
ensure the accuracy of multi-output predictions with limited numbers of inputs by incorporating
universal electrochemical, chemical, and mechanical laws with limited input data during training.

6. Conclusions

Inaccurate estimation of the remaining energy in BESSs can result in unattainable energy
dispatch outcomes, leading to less than optimal economic returns that could threaten end-user
satisfaction and increase the risk of investment in battery projects. While the impact of this
problem may differ across various battery technologies, most current battery technologies can
be significantly affected. In this paper, the limitations of simple battery models are quantified
through the experimental analysis of Li-ion batteries and VRFBs in inaccurate remaining energy
estimation. Subsequently, the detrimental effects of these imprecise battery models on energy
dispatch and economic returns are illustrated through a residential energy arbitrage application.
Given the essential role of BESSs in the decarbonisation of transportation, heavy industries such
as mining, and the electric grid, this may have severe financial consequences and potentially hin-
der decarbonisation initiatives among various electrification sectors. Therefore, this study aims
primarily to raise awareness among BESS operators and investors to refine existing practices. We
also have developed and evaluated a practical solution that can be applied in numerous studies
focused on BESS planning and operation.

Analysing comprehensive experimental battery data aids in enhancing the performance of
current battery models; hence, interdisciplinary collaboration among researchers with diverse
expertise in electrochemistry, mechanical engineering, electrical engineering, and energy is es-
sential. Furthermore, testing the performance of the proposed EMS framework using actual
BESSs and developing accurate MILP battery models that consider all the operational mecha-
nisms are promising areas of future work to bring additional benefits to BESS users.
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Appendix A. Multi-physics vanadium redox flow battery thermal model

The proposed model is developed to simulate the vanadium species variations in the tanks and
stacks under the mass balance law, where the thermal modelling part is established and follows
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the energy balance law based on the work by Tang et al. in [32] and extended by Wang et al. using
an industrial-scale VRFB system with the 5 kW stack configuration reported in [33, 34, 35].

For vanadium ions in the stack:
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For vanadium ions in the tanks:
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The overall stack voltage during charging is:
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The stack voltage during discharging is:
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km = 1.6 × 10−3
(

Qc

10LeWe

)0.4

(16)

Note km is the mass transfer coefficient in dm s−1, and in this form the units for Qc, Le and
We are L s−1, dm and dm, correspondingly [34]. The electrolyte temperature in the stack:

CpρVs
dTs

dt
=QsCpρ

(
Tp − Ts

)
+ QsCpρ (Tn − Ts) + I2Rs + ITs

dE
dT
+ Psel f (17)
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The electrolyte temperature in the positive/negative tanks are:

CpρVp
dTp

dt
= QsCpρ

(
Ts − Tp

)
+ UtAt

(
Tair − Tp

)
(18)

CpρVn
dTn

dt
= QsCpρ (Ts − Tn) + UtAt (Tair − Tn) (19)

The definition and value of variables and definitions are given in Table 4 below:

Table 4: Model parameters and their definitions

System states
Symbol Definition Unit

cs
i , ct

i Concentration of i-th vanadium ion in stack and tank mol L−1

Es Stack voltage V

Ts, Tp, Tn Electrolyte temperature in stack, positive and negative tank ◦C

Tair Outside air temperature ◦C

I Applied current A

i Applied current density A m−2

Psel f Self-discharge losses (detailed derivation can be found in [35]) W

Parameters
Symbol Definition Value

N Number of cells in the stack 37

Vp, Vn Volume of the electrolyte in the positive/negative tank 240 L

Vs Volume of the electrolyte in the stack 40 L

He, Le, We Height, length and width of the electrode 0.3, 0.7, 2.5 × 10−3m

S Membrane area 0.21 m2

D Thickness of the membrane 1.27 × 10−4 m

R Gas constant 8.314 J mol−1 K−1

Qs, Qc System flow rate and cell flow rate 0.278, 0.0075 L s−1

ρ Electrolyte density 1.3 kg dm−3

F Faraday’s constant 96,485 C mol−1

r′ Overall cell resistivity 2.72 Ω cm2

Rs Overall stack resistance 0.048 Ω

k2 Diffusion coefficient of V2+ 8.768 × 10−12 m2s−1

k3 Diffusion coefficient of V3+ 3.222 × 10−12 m2s−1

k4 Diffusion coefficient of V4+ 6.825 × 10−12 m2s−1

k5 Diffusion coefficient of V5+ 5.897 × 10−12 m2s−1

E0′ Formal potential 1.40 V

At Surface area of the tank 2.8 m2

Ut Overall heat transfer capability of the tank 3.67 J K−1 s−1 m−2

ρ Electrolyte density 1.354 g cm−3

Cp Specific heat capacity of electrolyte 3.2 J g−1 K−1

18



Appendix B. Capacity and efficiency of the 5 kW/10 kWh VRFB system

The actual capacity and system efficiency of the proposed 5 kW/10 kWh VRFB system in the
energy management study is obtained from the simulation results using constant current (CC)-
constant voltage (CV)/constant power (CP)-CV for charging and CC/CP for discharge based on
the definition in [36].

Table 5: Performance of the proposed 5 kW/10 kWh VRFB system under different simulation studies

Current/ Power SoC range DOD ηrt Discharge energy

100 A 28.7-92.6% 63.9% 68.28% 7.97 kWh

80 A 22.8-92.5% 69.7% 69.97% 8.79 kWh

60 A 17.1-92.8% 75.7% 70.72% 9.50 kWh

40 A 11.3-92.9% 81.6% 67.60% 9.99 kWh (Nominal energy)
20 A 10.0-92.9% 82.9% 54.66% 9.02 kWh

5000 W 36.7-92.7% 56.0% 68.06% 7.01 kWh

4000 W 28.5-92.5% 64.0% 69.70% 8.09 kWh

3000 W 21.0-92.5% 71.5% 70.29% 9.02 kWh

2000 W 14.0-92.8% 78.7% 67.96% 9.69 kWh

1000 W 10.0-92.9% 82.9% 55.40% 9.14 kWh

ηs =

∫ t f

t0
(Pd − Paux) dt∫ t f

t0
(Pc + Paux) dt

(20)

Edch =

∫ t f

t0
(Pd − Paux) dt (21)

Here, Pc, Pd and Paux are the battery charge power, battery discharge power, and battery
auxiliary power.

Appendix C. Home energy management system (HEMS)

Objective (minimise electricity cost):

min
∑
t∈H

(
Cim

t Pim
t

)
∆t −

(
Cex

t Pex
t
)
∆t (22)

Battery operational constraint:

S oEt = S oEt−1 + ηr
Pch

t uch
t ∆t

En
−

(Pdch
t − Paux)udch

t ∆t
En

, ∀t ∈ H (23)

S oEmin ≤ S oEt ≤ S oEmax, ∀t ∈ H (24)

0 ≤ uch
t + udch

t ≤ 1, ∀t ∈ H (25)
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Pch
min + Paux ≤ Pch

t ≤ min
(
αch + βchPch

max, P
ch
max

)
+ Paux, ∀t ∈ H (26)

Pdch
min + Paux ≤ Pdch

t ≤ min
(
αdch + βdchPdch

max, P
dch
max

)
+ Paux, ∀t ∈ H (27)

When t = t0 & t f S oEt = 0, ∀t ∈ H (28)

Load power balance:

Ppv
t + (Pdch

t − Paux) · udch
t · ηinv − Pch

t · u
ch
t /ηinv = Pex

t − Pim
t + Pload

t , ∀t ∈ H (29)

Table 6: The definition of symbols, their value and type in the HEMS formulation for optimal energy dispatch of the
5 kW/10 kWh VRFB system (The DV in the table stands for decision variable and the coefficients for battery charg-
ing/discharging power regulation are designed to fully charge or discharge the VRFB system)

Symbol Definition Type

Cim
t Cost of imported electricity at timestep t (Time of use tariff in A$/kWh) Variable

Cex
t

Revenue of exported electricity to the grid at timestep t (Solar feed-in tariff in
A$/kWh) Variable

Pim
t Residential imported power from the grid at timestep t in kW Real number DV

Pex
t Residential exported power to the grid at timestep t in kW Real number DV

S OEt Estimated remaining energy in the battery at timestep t in % Variable

uch
t Battery status indicator during charging at timestep t (1: in charging, 0: idle) Binary DV

udch
t Battery status indicator during discharging at timestep t (1: in discharging, 0: idle) Binary DV

Pch
t Battery charge power at timestep t in kW Real number DV

Pdch
t Battery discharge power at timestep t in kW Real number DV

Ppv
t PV power generation at timestep t in kW Variable

Pload
t Load power at timestep t in kW Variable

Pch
min Minimum charge power (1 kW) Constant

Pdch
min Minimum discharge power (0.2 kW) Constant

Pch
max Maximum charge power (5 kW) Constant

Pmax
dch Maximum discharge power (5 kW) Constant

Paux Auxiliary power of the VRFB (0.1 kW) Constant

αch Coefficient in Eq. (26) for battery charging power regulation (10 kW) Constant

βch Coefficient in Eq. (26) for battery charging power regulation (-9 kW) Constant

αdch Coefficient in Eq. (27) for battery discharging power regulation (1 kW) Constant

βdch Coefficient in Eq. (27) for battery discharging power regulation (6 kW) Constant

En Nominal (rated) energy capacity of the VRFB system (10 kWh) Constant

S OEmin Minimum SOE level during the operation (0) Constant

S OEmax Maximum SOE level during the operation (100%) Constant

ηinv DC-AC Inverter/AC-DC battery charger efficiency (95%) Constant

ηrt Round-trip efficiency of the 5 kW/10 kWh VRFB system (70%) Constant

20



References

[1] H. Ritchie, The price of batteries has declined by 97% in the last three decades, Our World in Datahttps://
ourworldindata.org/battery-price-decline (2021).

[2] K. Mongird, V. V. Viswanathan, P. J. Balducci, M. J. E. Alam, V. Fotedar, V. S. Koritarov, B. Hadjerioua, Energy
storage technology and cost characterization report, Tech. rep., Pacific Northwest National Lab (PNNL), Richland,
WA, United States, https://energystorage.pnnl.gov/pdf/PNNL-28866.pdf (2019).

[3] E. James, S. Shazan, I. Chingis, O. Conor, Fuel cell electric vehicles 2024-2044: Mar-
kets, technologies, and forecasts, https://www.idtechex.com/en/research-report/

fuel-cell-electric-vehicles-2024-2044-markets-technologies-and-forecasts/977 (December
2023).

[4] Australian Renewable Energy Agency, Battery storage, https://arena.gov.au/renewable-energy/

battery-storage/ (March 2024).
[5] X. Lin, K. Khosravinia, X. Hu, J. Li, W. Lu, Lithium plating mechanism, detection, and mitigation in lithium-ion

batteries, Progress in Energy and Combustion Science 87 (2021) 100953.
[6] P. V. Chombo, Y. Laoonual, A review of safety strategies of a Li-ion battery, Journal of Power Sources 478 (2020)

228649.
[7] T. Levin, J. Bistline, R. Sioshansi, W. J. Cole, J. Kwon, S. P. Burger, G. W. Crabtree, J. D. Jenkins, R. O’Neil,

M. Korpås, et al., Energy storage solutions to decarbonize electricity through enhanced capacity expansion mod-
elling, Nature Energy (2023) 1–10.

[8] A. J. Gonzalez-Castellanos, D. Pozo, A. Bischi, Non-ideal linear operation model for Li-ion batteries, IEEE Trans-
actions on Power Systems 35 (1) (2019) 672–682.

[9] K. Antoniadou-Plytaria, D. Steen, O. Carlson, M. A. F. Ghazvini, et al., Market-based energy management model of
a building microgrid considering battery degradation, IEEE Transactions on Smart Grid 12 (2) (2020) 1794–1804.

[10] Y. Chen, K. Zheng, Y. Gu, J. Wang, Q. Chen, Optimal energy dispatch of grid-connected electric vehicle consider-
ing lithium battery electrochemical model, IEEE Transactions on Smart Grid 15 (3) (2023) 3000–3015.
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