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SUMMARY

Smart meters have been widely deployed worldwide, but there is
an often-overlooked problem that remains unresolved: the data
collected from these meters is of relatively low time resolution, hin-
dering the realization of smart grid benefits. This perspective un-
folds the roadblocks to achieving high-resolution data from a smart
metering infrastructure.We highlight the loss of critical information,
essential for many smart grid applications, due to low-resolution
readings of residential consumer data.We then outline themain rea-
sons behind the lack of high-resolution data, the tetralemma on
balancing data collection, transmission, warehousing, and privacy
concerns. Finally, we hypothesize a framework for data collection,
maintenance, communication, and storage of smart utility meters
data to obtain high-resolution records by tackling the challenges us-
ing a dictionary-based compression method and separately main-
taining the compressed products at the user ends and data center.

INTRODUCTION

During the last two decades, the deployment of smart meters has gained mo-

mentum around the world, with the market size of smart meters estimated at 23.1

billion USD and expected to reach 36.3 billion USD in 2028. The Australian Energy

Market Commission has recommended 100% uptake of smart meters by 2030,1

and the EU expects 225 million smart electricity meters installed by 2024, corre-

sponding to a penetration rate of 77%.2 This is timely with the advancements in

big data, machine learning, and demand-side management techniques that enable

service providers to tap into the new energy data stream to create value-added ser-

vices.3 Out of this paradigm shift, the concept of energy digitalization was born4 to

develop tools for data-driven decision-making through data transformation into

actionable insights. As a result, smart meters, as the cornerstone of energy digitali-

zation, were expected to offer numerous benefits to end users, such as energy moni-

toring, alerts for overconsumption, lower moving costs due to remote power on/off

control, flexible pricing, such as time of use (ToU) and, more importantly, new and

expanded services that could only be envisaged in a digital energy system ushering

in a smart grid era.

Although someof these benefitsmay have been realized in some jurisdictions, the wide-

spread adoption of smart meters did not necessarily lead to full-scale energy digitaliza-

tion, particularly in terms of delivering financial benefits to consumers. According to the

Mission:data Coalition,5 less than 3% of today’s smart meters in the United States fulfill

the 2009 promises of customer savings in the American Recovery and Reinvestment
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Figure 1. A summary of the current status of the smart meters rollout in selected countries

The figure outlines usage, time resolution, and meter details across nine selected countries.1,8,12–30
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Act.6 In Australia, the Australian Energy Council highlighted that the current metering

arrangements fail to effectively realize the key potential benefits to customers.7 One

report pointed out that, in the UK, 7% of meters are smart meters in the traditional

mode in which they lost simple and smart functionality, such as automatic readings

and bidirectional communications.8 The European Commission reported that 7 out of

the 16 countries undergoing widespread deployment of smart meters lacked the ability

to even relay consumption data back to consumers.9 In Canada, wireless smart meters

are read every 30 or 60 days,10 which is not much different from traditional manually

read electricity meters. We summarized the current state of the smart meter rollout in

selected countries in Figure 1, including the ownership of the smart meters, the acces-

sibility of the data from the smart meters, and the reading resolution, suggesting that

current smart meter implementations are discriminatory, lack interoperability, and pro-

duce low-resolution data. This is despite that the internal sampling rate of smart meters

is typically between 1 Hz and 1 MHz.11

In this perspective, we focus on issues and challenges related to data granularity on

utility meters for residential consumers, which is the main barrier to seeing the ben-

efits of the smart grid. As shown in Figure 1, smart utility meters predominantly pro-

vide readings within timescales ranging from 15 min to an hour. Taking into account

the proliferation of distributed energy resources (DERs) and electric vehicles (EVs) in

modern power systems, we show that the current resolution of smart meter readings

does not support a broad spectrum of smart grid applications and services due to

information loss. To do so, first, the challenges of the existing smart metering infra-

structure with low-resolution data will be explored in the subsequent section. Then,

we identify the key reasons and roadblocks behind achieving high-resolution read-

ings. Subsequently, we propose a potential solution to enable modern smart meters

to be operated in a truly smart way. This framework facilitates the acquisition of high

resolution, possibly real-time energy consumption data through a dictionary-based

compression method. The data are compressed into daily patterns and their repre-

sentations with only a fraction of information transmitted to the data center. It offers

several advantages over the existing metering infrastructure, including low storage

and communication requirements, minimal privacy concerns, and robustness, which

are addressed in the paper, respectively.
2 Cell Reports Physical Science 5, 101830, February 21, 2024
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ISSUES WITH LOW-RESOLUTION SMART METER DATA

The main objective of a smart grid is to improve the reliability, efficiency, and sus-

tainability of the electricity supply and demand by using high-resolution data

through advanced monitoring and control systems with bidirectional communica-

tion. This will facilitate new smart grid technologies and applications for managing

electricity usage and grid performance by enabling a quick response to changes

in demand and supply,31 as well as offering new benefits to consumers. Hence, ac-

cessing high-granular electricity consumption data is the key enabler of smart grid

benefits, including direct benefits to consumers, benefits to distribution networks,

and to the grid as a whole. For example, as a direct benefit to consumers, non-intru-

sive load monitoring (NILM) techniques help residential consumers optimize their

energy use by providing detailed insights into their energy consumption at the

appliance level, which could potentially lower their electricity bill.32 NILM tools

can also be developed to detect abnormal usage patterns or energy theft, allowing

timely intervention and maintenance of faulty appliances.33 Conducting NILM

studies, however, requires granular smart meter data with resolutions from 1 Hz to

1 MHz32,33 As benefits to the distribution network, the dynamic operating envelope

provides dynamic upper and lower bounds on import or export power in a given time

interval for individual DER assets or a connection point. This contributes to the

increased adoption and compliance of various DER assets installed in distribution

networks. It also helps to dynamically control residential DER instead of a fixed

export limit that can lead to an unnecessary amount of curtailed rooftop photovol-

taic (PV) generation.34 To facilitate a dynamic operating envelope, however, high-

resolution data through (near) real-time bidirectional communication are needed

to update the export limits for DERs.34 In addition, as benefits to the grid as a whole,

the aggregated service allows residential users with rooftop PV systems, EVs, and

batteries to participate in the energy market as small generation aggregators in

the context of the Australian electricity market.35

Currently, the applications of smart meters mentioned above require special meters

in the absence of high-resolution real-time data exchange in smart meters. A

comprehensive list of smart grid applications and their requirements is provided

in Table 1. Comparing the requirements for many smart grid services with the exist-

ing sampling intervals reported in Figure 1, we can see a substantial gap between

the application requirements and the available data from the existing smart meter-

ing infrastructure. This gap will prevent us from achieving the goals of the smart grid

due to relying on the data currently collected by the existing smart metering infra-

structure. This problem becomes increasingly severe with behind-the-meter DERs

and energy storage, as they need to be separately measured to provide usable

data that fulfill some of the application requirements, which presents a 2-fold chal-

lenge. First, the amount of data that needs to be processed and transmitted could

be doubled or tripled, placing additional strain on communication networks and

the utility infrastructure. This is important because it is not the smart meters that

are the largest cost of smart grid implementation, but rather the required communi-

cation infrastructure.36 Second, the intermittency of DERs introduces more fluctua-

tions in the net demand, which cannot be accurately captured with low-resolution

readings. This will cause more generation and demand mismatch, which has to be

fixed by more expensive services; hence, higher electricity prices for consumers.

To better understand the limitations of low-resolution data, two examples are pre-

sented using actual data from residential consumers. The first example comes

from an unidentified residential consumer in Adelaide with a 10.6-kW solar PV sys-

tem, an air conditioning system drawing up to 8.4 kW, and a private meter installed
Cell Reports Physical Science 5, 101830, February 21, 2024 3



Table 1. Smart grid applications, required sampling interval, and benefits

Application Required sampling interval Stakeholder Benefits Beneficiary Reference

Load signature detection 925 Hz to 1.2 kHz end users and third parties understand users’ load, load
forecasting, improved power
quality, and reliability

grid as a whole Huchtkoetter and Reinhardt38

Non-intrusive load modeling 1 Hz to 1 MHz end users provide diagnostic information
useful for identifying energy-
consuming or malfunctioning
appliance

consumers Wang et al.3,32; Himeur et al.33

Preventive maintenance and
malfunction detection

hourly to 1 MHz utilities predictive maintenance can
also help optimize
maintenance techniques and
improve program planning

distribution network Wang et al.3; Haq et al.39

Cybersecurity hourly to 1 MHz end users and third parties protect the smart grid from
cyberattacks and other security
threats

consumers Campbell31; Wang et al.40

Citizen energy communities as
microgrids

1 s utilities islanding detection and
seamless operation, frequency,
and voltage regulation

distribution network Wang et al.3; Campbell31

Grid-interactive buildings 1 s utilities enable buildings to provide
ancillary services to the grid

distribution network Li et al.41; Kapoor et al.42

Electric vehicle integration 1 s to 30 min end users and third parties enable the integration of
electric vehicles into the grid,
including charging stations and
management systems

grid as a whole Muratori43

Identification of outages 1 to 30 min distribution system operators verification of power
restoration

distribution network Australian Energy Market
Commission1; McKenna
et al.44; Andrysiak et al.45

Energy management systems 5 min end users and third parties optimize the use of energy
resources across a range of
applications, including
buildings, industries, and
transportation

consumers Táczi et al.36; Collinson46

Dynamic operating envelopes 5 min utilities, end users, DOS, and
third parties

increase network visibility distribution network Australian Energy Market
Commission1 ; AEMO35; DEIP
Dynamic Operating Envelopes
Working Group47

Energy theft detection 30 min utilities prevent meter tampering,
direct theft, and tariff misuse,
help improve power quality
and overall profitability

distribution network Australian Energy Market
Commission1; Wang et al.3

Energy marketplaces subject to the services (e.g., 6 s
for regulation service)

end users and third parties allow customers to participate
in a dynamic energy
marketplace, where they can
buy and sell energy and other
related products and services

grid as a whole Kapoor et al.42

Energy trading platforms subject to the market (e.g.,
15 min for energy market)

end users and third parties more efficient and transparent
pricing and allocation of
energy resources

consumers Wang et al.3

(Continued on next page)
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Table 1. Continued

Application Required sampling interval Stakeholder Benefits Beneficiary Reference

Demand response subject to the market
(e.g., 6 s for regulation service)

end users and utilities help demand-supply balance
save electricity expense for
users

consumers Huchtkoetter and Reinhardt38

Virtual power plants subject to the market
(e.g., 6 s for regulation service)

end users and third parties provide reliable and flexible
power to the grid

distribution network Campbell31; Muratori43

Aggregated service subject to the market
(e.g., 6 s for regulation service)

utilities, end users, DOS, and
third parties

aggregate residential users
distributed energy resources
and participate in themarket as
an aggregator

grid as a whole Wang et al.3; Australian Energy
Market Commission34

Smart home technologies subject to data availability
(e.g., 5 min for batteries)

end users and third parties optimize energy usage in the
home

consumers Green Button Data48; i-Hub,
Smart building data clearing
house49

Distribution automation subject to data availability
(e.g., 1 s for power quality)

utilities, end users, DOS, and
third parties

improve reliability, reduce
outage duration and
frequency, improve power
quality, and reduce operational
costs

distribution network IEEE PES Distribution
Subcommittee50

Load scheduling subject to data availability
(e.g., 1 min for EVs)

end users and third parties improve power quality and
reliability by automated load
control and loading forecasting

consumers Wang et al.3; Muratori43
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Figure 2. Data comparison of a single house in Australia and average consumption of 12 houses in Germany

The data with different temporal sampling rates are compared with wavelet analysis (A and D), heatmaps (B and E), and detailed comparison of time

series patterns (C and F). The red line in the wavelet graph (A and D) indicates a 2-h period, where all wavelet information below the red line is invisible

for hourly data based on Nyquist sampling theorem, i.e., the data must be sampled at an interval at most half of the smallest sampling period present in

the signal. The top figure in (B) is the heatmap of 1-week’s electricity consumption stacked by days with a 5-min resolution, while the bottom figure

shows hourly resolution. The area in the purple box is the period containing the air-conditioning load signature with 5-min data (blue) and hourly data

(red). Similarly, the three figures in (E) are heatmaps by days with a 2-s sampling interval, 5-min interval, and hourly interval. Time series comparison is

shown in (F), with 2-s data (green), 5-min data (blue), and hourly data (red), respectively.
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to measure solar generation and the user’s energy consumption at a 5-min sampling

rate. The second case study is from the NOVAREF project in Germany37 containing

1 week of data at 2-s sampling intervals. Twelve houses are monitored in this project,

and the dataset contains the average power consumption of these houses. We

compared the data with different sampling intervals of 2-s, 5-min, and 1-h resolution

(plotted in Figure 2). Three types of figures are produced for each example, covering

various time ranges and offering distinct information about the samples. The wavelet

analysis provides a multi-resolution view of the data, showing frequency compo-

nents, their scales, and how the frequency components change over time. The

heatmap provides the intensity of electricity consumption and its dependency and

correlation over time for a week. The time series plot shows the detailed load signa-

ture over several hours.

From domain knowledge, we know that an air conditioner operates in cycles, turning

on and off to maintain the desired temperature in a room, called the load signature

and shown in the purple box in Figure 2C, where we see that the load signature can

be clearly identified in 5-min sampled data but not in the hourly data. This can be

distinguished by the rapid fluctuations in energy consumption at night. Similarly,

by comparing the demands from three different resolutions shown in the purple

box in Figure 2F, we observe that the daily peak demands are reduced in the low-res-

olution data. Therefore, any smart grid application that relies on accurate peak de-

mand values, for example, new residential tariffs with demand charge or dynamic

export limit, will fail due to the lack of appropriate data. Looking at Table 1, we

see that most of the smart grid applications with direct or indirect benefits to con-

sumers are severely affected by the potential loss of information due to low-resolu-

tion metering.

REASONS FOR LOW-RESOLUTION SMART METER DATA

Although high-resolution readings are essential and possible using the capability

of the existing smart meters, end users and smart grid service providers do not

have access to them because of three major reasons presented in the following

subsections.

Data transmission

The first obstacle that prevents widespread high-resolution data reading is the

limited band-width available for communication between smart meters and meter-

ing service providers (utility companies or distribution system operators). For

example, the main communication protocols for European utilities smart meters

are Zigbee and M-bus, both have limited range and band-width, that is, around

100 m and up to 250 kbps at 868 MHz,51,29 which makes it challenging to transmit

larger amounts of data generated by high-resolution readings, leading to delays

or interruptions in the data transmission process. The communication protocols of

smart meters in the Asia Pacific region rely on computer networking technologies,

such as power line communication (PLC) or cellular services, to transmit the collected

data to the metering service provider.11 The large number of low bit rate modems
Cell Reports Physical Science 5, 101830, February 21, 2024 7
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and the delays for long-distance transmitted data pose challenges for PLC in sup-

porting smart grid communication,52 while cellular services face the risks of data

loss during network congestion.11 This can affect the accuracy and reliability of

the data readings. The problem becomes increasingly severe for higher-resolution

data, as a higher volume of numbers produces more delays or disruptions in the

data transmission process.
Data warehousing

Data warehousing is another impediment to measuring and collecting high-resolu-

tion electricity consumption data. A common arrangement for smart meter data

warehousing, such as in Australia,53 is a centralized approach in which the metering

data provider or distribution network service providers (DNSPs), exercising a mo-

nopoly over an area, receive and maintain data exclusively. Then, utilities get access

to the data and some utilities make them available to end users through their portals

and applications. The problem is that the current level of resolution is not imperative

for billing purposes although it is not enough to enable smart grid applications (see

Table 1). DNSPs exhibit minimal interest in capturing data at higher resolutions for all

residential users, as they will face more challenges and difficulties. One such issue is

the high cost of data warehousing, which increases significantly with the storage

requirement. For example, an article in the Amazon News Blog shows that it costs

US$19,000 to US$25,000 per terabyte per year to build and run a data warehouse.54

This means that, for a DNSP maintaining a one-terabyte warehouse, increasing the

data resolution from 1 h to 2 s will require 1,800 times the storage, hence a US$36

million additional cost on the data warehousing alone. Certain utilities in the United

States divested from their electricity generation plants to focus solely on distribu-

tion, which could earn a guaranteed return for utility shareholders.55 It would be diffi-

cult to convince them to spend even more to enable higher-resolution data on smart

meters without the prospect of a good return on investment. Thus, they show no

incentive to collect high granular energy consumption data.

In addition, since DNSPs or utility companies need to deal with a constantly chang-

ing group of residential users and other stakeholders, both in terms of their energy-

related equipment and the number of customers, the high cost of data storage,

maintenance, backup, migration, and building communication links to provide

data access to customers or third parties may prevent them from increasing the gran-

ularity of current meter reading.56
Data privacy

Research studies have identified serious privacy concerns about high-resolution

electricity consumption data from end users.44,57 In essence, any processingmethod

applicable to electricity service providers to analyze the habits and lifestyles of res-

idential electricity users can be applied equally by attackers.58 For instance, using

simple NILM algorithms, attackers can estimate the number/types of electrical appli-

ances, estimate the composition of a home, gather behavioral knowledge to commit

criminal activities, infer users’ activities at home, and perform location tracking

based on EV usage patterns.59 Other studies have also reported the detection of hu-

man behavior, occupancy, holidays, air conditioners, and swimming pools using

data from residential electricity consumption.59 Even law enforcement agencies

use electricity consumption data in the courts. For example, the Columbus Dispatch

reported that, in central Ohio, law enforcement agencies issue at least 60 subpoenas

every month for energy usage records of individuals suspected of operating indoor

marijuana-growing operations.60
8 Cell Reports Physical Science 5, 101830, February 21, 2024
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In Australia, data on electricity usage from electricity customers was shared with

third parties, including debt collectors and mail houses, who can get insight into

when a house is occupied.61 Furthermore, despite the general belief that smart me-

ter data are anonymous, there is evidence indicating that malicious third parties or

hackers can link personal data records without identifiers to individuals through

external knowledge.62 For example, a study62 shows that 68% of the records in

the dataset of 180 households were re-identified using simple statistical metrics.

Beyond the threat of re-identification, mass human behavioral analysis, malicious

data engineering, and real-time surveillance are possible by hackers accessing

fine granular electricity data. For these reasons, the smart meter rollouts also face

resistance from unexpected intermediary actors, e.g., municipalities in France,

who are the official owners of the electricity meters.63 They perceived the risk of us-

ing electricity data divided between privacy, terrorism, and commercial use by third

parties.63 Furthermore, concerns are raised among several consumer advocacy

groups about the extensive household data that smart meters collect and transmit

to DNSPs or utilities, e.g., how real-time electricity consumption data can be used

to identify the number of residents in a home.9 In response to the above concerns,

the EU’s energy efficiency legislation has led to a slowdown in the deployment of

smart meters. The Netherlands first envisaged smart meters in 2006, but the Smart

Metering Act was rejected by the Dutch First Chamber in 2009 due to privacy con-

cerns raised by the smart meter legislation.57 In France, lawyers filed a class action

lawsuit against utility companies because of remote monitoring of users’ gas and

electricity usage.46

Other concerns

Under the circumstances explained above, smart grid service providers, e.g., virtual

power plant operators, choose to install private meters for their users to collect high-

resolution data. However, this leads to more issues regarding data accessibility,

cost, and privacy. For instance, retail suppliers do not have access to the private me-

tered data installed by the home battery system, but they have to manage price risks

associated with the load-serving entity’s obligations with only low-resolution data

from utility meters. In some cases, customers do not have access to their high-reso-

lution data collected from their houses, as their private meters are controlled by a

third party who wants to preserve its exclusive rights to the valuable data. Further-

more, the growth in data collected by various entities poses difficulties in the inte-

gration of data systems.64 Due to the lack of policies, regulations, and common stan-

dards on the collection, transmission, and usage of private meters compared with

smart utility meters. Interoperability issues are unavoidable, making it difficult to

collate the data from different appliances behind the meter for integrated solutions,

such as home energy management systems. Also, privacy concerns will grow this

way because, instead of only one entity responsible for data collection and ware-

housing, there could be several entities with partial or full access to consumers’

data. This means that there are more vulnerabilities and access points to attack

and a higher chance for one entity to fail to protect the data.

In addition to the concerns discussed in this section, some new arguments have

emerged questioning the necessity of replacing dumb meters with smart meters.

For instance, cost-benefit analysis in some countries, e.g., Germany and France,

shows that large-scale deployment of smart meters may not be ecologically or

economically beneficia.51 This is mainly due to the fact that many current smart me-

ters are only used for automatic billing purposes. As a result, the uni-directional

communication and low-resolution data prevent the development of new services

that could justify the upfront capital cost of the smart metering infrastructure.
Cell Reports Physical Science 5, 101830, February 21, 2024 9



Figure 3. Potential solutions for enabling the high-resolution data analysis

The requirements of several potential solutions, including hardware-based, mathematical and AI modeling, binary-to-binary compression, and Smart

Meter Framework 2.0, are shown.
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In recent years, more efforts have been made in response to data availability issues.

Generally, these projects aim to provide third-party companies and end users

with easy and secure access to energy usage information, e.g., Green Button Data

in the United States,48 i-Hub in Australia,49 DataHub65 and Center Denmark66 in

Denmark, and Estfeed30 and Synergies67 for European users. However, such initia-

tives face new challenges, such as additional storage requirements, data synchroni-

zation, and data transmission, which become increasingly significant with high-res-

olution readings. These challenges must be effectively addressed to ensure that

these projects will succeed in the long term.

POTENTIAL SOLUTIONS FOR LOW-RESOLUTION SMART METER DATA

In summary, three main challenges must be addressed to measure, transmit, and

maintain high-resolution electricity data, which are consumers’ privacy, communica-

tion requirements, and data warehousing. In addition, several minor issues must be

considered, as listed in Figure 3. The best solution will be the one addressing all ma-

jor and minor issues simultaneously. The existing methodologies in the literature

that could potentially be viable solutions are categorized and compared in Figure 3.

The first category is to use robust and reliable hardware solutions, e.g., internet of

things hardware and improved telecommunication protocols, to support high-vol-

ume data transmission required for high-resolution smart meter readings.11,68 How-

ever, these solutions do not address concerns regarding data warehousing and the

cost of the required communication infrastructure, which is reported to be the

largest cost, rather than the smart meters themselves.36

The second category involves mathematical or machine learning (ML) techniques to

model electricity usage data such that we communicate and store the model instead

of the actual data. Specifically, the former uses statistical models, such as the non-

homogeneousMarkov chain and statistical adjusted engineeringmodel.69 The latter

uses ML techniques, such as federated learning70 or autoencoder,71 to model smart

meter data and store the models produced in the data center. Mathematical models

have greater interpretability than ML-based solutions, but they require detailed

knowledge of the system in dealing with complex and non-linear data. Among the

candidate solutions based on ML, federated learning appears to be the most prom-

ising one, as it facilitates data processing in a distributed manner on the user side,
10 Cell Reports Physical Science 5, 101830, February 21, 2024
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preserving privacy by having each user contribute to creating the model in the

training stage.72 However, it requires high computational capacity at the end users’

side and frequent communications among all end users and the data center in the

training phase for aggregating the updates into the model, which is currently an

obstacle for smart meters. Furthermore, a large amount of memory is needed to

store the users’ time series data for modeling at the edge of the grid, which could

be beyond the available resources by edge computing devices.

The third category of potential solutions is data compression techniques, particularly

time series compression. These algorithms (encoders) take time series data and

return its compressed representation of a smaller size. From the compressed repre-

sentation, the original time series can be reconstructed using a decoder. If the recon-

structed data are identical to the original data, the algorithm is lossless; otherwise, it

is lossy. Modern smart metering data exchange adheres to the International Electro-

technical Commission 62056 standard, where smart meters send ASCII data via a se-

rial port.73 As a result, current studies of compression techniques for smart grid data

focus on binary-to-binary lossless compression. Although these approaches could

compress the data at high rates, thus reducing communication and storage burden,

they are not privacy preserving. Other approaches are proposed using audio signal

binary-to-binary compression or text-to-text compression techniques,32 such as

LZMA,74 Lempel-Ziv,75 and BZIP2.75 For example, the Lempel-Ziv approach com-

presses a stream of bits of data by using fewer bits to present the repeated seg-

ments. Similarly, some research studies use sequential algorithms, including

Huffman coding, delta encoding, run-length encoding, and Fibonacci binary encod-

ing, to compress the data.76 To conclude, time series compression techniques are

effective in reducing the communication and storage burden of smart grid data,

but are not privacy-preserving. These data compression techniques mainly focus

on lossless encoding having already been applied in the data encryption stage to

preserve accurate data for billing purposes, while the amount of data transmitted

depends on the resolution of the readings. However, when high-resolution data

need to be transmitted, the volume of data increases linearly. Therefore, alternative

solutions are required to further reduce the size of transmitted data while addressing

the privacy concerns of conventional compression techniques.

Proposed solution: Smart Metering Framework 2.0

Figure 4A illustrates how smart meter data are processed and transmitted in the ex-

isting frameworks, which we refer to as Smart Metering Framework 1.0. Lossless data

compression is facilitated with data encryption when the numerical values of the

readings are converted into binary values. The data are then transmitted via a util-

ity-maintained concentrator and the headend system to the data center. At the

data center, trusted third parties (TTPs) can request access to data.

In comparison, we propose a potential solution, hereafter called Smart Metering

Framework 2.0, that could fulfill all the criteria mentioned in the previous section.

The framework is summarized in Figures 4B and 4C. In essence, it consists of two

phases, namely data storage and data reconstruction. In data storage, smart meters

can store a single accumulated reading of imported and exported energy (or as

many tiers in a ToU tariff) for billing purposes while retaining a high-resolution

time series for use in smart grid applications. We propose to apply a lossy but

shape-preserving approach that can compress and separate the information so

that users only keep partial information for privacy preservation. The other part of

the information is transmitted to the data center, so neither side keeps the entire

time series of the smart meter data. One idea that inspires us most to achieve this
Cell Reports Physical Science 5, 101830, February 21, 2024 11
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Figure 4. Flow chart of the existing metering data infrastructure, including Smart Metering Framework 1.0 and the proposed framework, Smart

Metering Framework 2.0, with a single user example

(A) In the current advanced metering infrastructure, the smart meter data are collected at the users’ premises as numerical values. Then it is encrypted

and compressed into binary data before being sent to the data concentrator located in physically secured locations, e.g., substations or transformer

stations.77 The data concentrator receives multiple smart meters data via the neighborhood area network and uses an Ethernet Wide Area Network

connected to the headend system. The headend system has an off-the-shelf server that is connected to the meter data nanagement (MDM) system

database.77,78.

(B) The proposed Smart Metering Framework 2.0 involves two phases: data storage and data reconstruction. For data storage, the smart meter data are

collected in a temporal batch and compressed into codewords and representations on a daily basis. The codewords are stored in the smart meter

storage, while the representations are communicated to the data center via a local gateway and a headend system. When the TTP requests data for data

reconstruction, it must send its authentication, requested users, period, and resolution. The data center will forward the information via the transmission

stage, get the codewords from corresponding end users, and reconstruct the data with the required period and resolution.

(C) 1–4: the codewords stored in the smart meter of a user, data collection, representations for all users in the data center, and the reconstructed data

for TTP.
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goal is the codebook method. The codebook method was first conceptualized in

200479 and formulated in 2008 for time series similarity analysis.80 It contains a set

of representative patterns, called codewords, and a set of indexes to the codewords

for time series reconstruction.80 The optimal codewords are usually obtained from

the entire time series data, i.e., offline compression, with the generalized Lloyd algo-

rithm (GLA) based on the nearest neighbors condition and with iterative computa-

tions.80 However, for smart grid applications, the entire electricity time series data

for compression does not exist because the smart meters require at least daily com-

pressed data to transmit to the data centers. Therefore, the GLA is not applicable. In

this regard, we believe that a dictionary-based time series compression method76

could be a compelling solution by combining the compression algorithm and the

codebook method. More specifically, instead of finding codewords from iterations

and optimizations, the codebook could be built with batch compression without

requiring the entire time series data. Essentially, in Smart Metering Framework

2.0, the codebook for each residential user contains two sets of data, namely code-

words and ‘‘representations.’’ The codewords are unique, daily high-resolution pat-

terns. The representations are the indices that point to the codewords that represent

the demand of consumers each day. Each index in representations shows one day’s

pattern by pointing to the codewords in a daily sequence. To be more specific, the

smart meters measure imported and exported energy at a high sampling rate, with

themeasurements for the current day being stored in a temporary batch, as shown in

the Figure 4B. Then it uses the codewords stored at the user’s end to compute daily

representations and update the existing codewords when new unique patterns are

identified.

With the above compression method, each meter only sends the daily representa-

tion to the data center on a daily basis in the data storage phase. This is shown in

the top flowchart of Figure 4B. Since the representation cannot provide much infor-

mation without codewords and does not require much communication bandwidth,

we propose a simple gateway instead of data concentrators to upload data from

the neighborhood area network (NAN) to the wide area network (WAN). For data

reconstruction, as shown in the bottom flowchart of Figure 4B, when a TTP requests

access to high-resolution data from users’ smart meters for a given time period, they

can query the codewords according to the representations of the requested period.

Obviously, a consumer’s consent is required before the TTP’s access is granted. To

be more specific, an authenticated TTP initiates a request to the data center, spec-

ifying the desired users using national meter identifier numbers and the period of

time. Subsequently, the data center undertakes the processing of this request by

collecting representations for the requested time period from the database.

Through this process, a distinct set of representations can be computed, indicating
Cell Reports Physical Science 5, 101830, February 21, 2024 13
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the indices of codewords essential for subsequent data reconstruction. Upon deter-

mining the required codewords, the data center transmits a request to the headend

system via WAN, thereby confirming the user IDs and associated codewords. The

headend system then relays this confirmation to the respective gateways in the

NAN, which subsequently forwards the request to the intended end users’ smart me-

ters. Then, the end users’ smart meter will send the queried codewords to the data

center based on the indices received, similar to the example shown in Figure 4C.

When real-time data are requested by the service provider, i.e., the data being pro-

cessed at the collection stage, the end users’ meter will send the data from the tem-

porary current day batch. In this way, the service provider receives the requested

real-time data in a lossless manner.

The proposed framework offers a number of advantages. Smart meters only store

codewords without time or day notion, while the data center retains compressed

representations of the users. As a result, reconstructing the data from one side

alone becomes impossible. This approach provides a robust solution to address

privacy concerns, as attackers cannot obtain information that does not exist. For

example, physical attacks to the end user’s meter storage can only attain the code-

words that present partial daily patterns without the time signature that made it.

Since the disclosed information does not indicate which pattern corresponds to

which day, the attackers cannot get much information, e.g., to know which days

the user is usually not at home. Similarly, the adversarial attack during data

communication cannot access complete information. This is because the proposed

framework exclusively transmits representations in the data storage phase and co-

dewords corresponding to the requested time period in the data reconstruction

phase. Moreover, obtaining even this limited information (codewords) is more

challenging for hackers when compared with Smart Metering Framework 1.0,

where the data are transmitted at fixed intervals. The proposed solution commu-

nicates codewords upon request, ensuring that attackers remain unaware of the

timing of TTP queries. In addition, the Smart Metering Framework 2.0 has low stor-

age and minimum communication requirements. For example, assuming a con-

sumer with ten codewords, the daily demand profile of the 100th day could be

best represented by codeword 1. Therefore, the representation for the 100th

day is 1, and all m = 100 days of data can be stored at the user’s end in the

form of n = 10 codewords. This will result in m� n
m = 97% memory saving. At the

date center end, all representations are stored for each user for these 100 days.

The space-saving ratio can increase over time for users with relatively stable elec-

tricity usage patterns. In addition, the accumulated energy consumption could be

handled separately for billing purposes by smart meters knowing the current tariff

structure of users. Therefore, this framework could enable trustworthy bidirectional

communications. It also enables a more efficient billing of energy consumption for

both consumers and utilities compared with Smart Metering Framework 1.0

because of higher resolution. The increased accuracy in tracking users’ consump-

tion patterns makes it possible for utilities to charge their users more accurately

based on their peak demands and generations, which cannot be adequately

captured in low-resolution data, as shown in Figure 2. Furthermore, Smart Meter-

ing Framework 2.0 is more robust in terms of suffering from invalid data or faulty

readings, since they would be replaced by data from the codeword.
KEY AREAS FOR FUTURE RESEARCH

Different aspects of the proposed method require extensive research, which is sum-

marized in the following four sections.
14 Cell Reports Physical Science 5, 101830, February 21, 2024
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Similarity metrics for time series compression

First, a key challenge in codebook methods is quantifying pattern similarities based

on their shapes. Most research studies in this area use Euclidean distance and dy-

namic time warping for quantification of similarity.81 However, these research

studies developed shape-based similarity identification techniques that only work

for clustering/classification of consumers, where their methodologies are not suit-

able for reconstructing time series.82 Furthermore, similarity measurements for

smart meter data compression and different smart grid applications have rarely

been discussed or applied. As a result, similarity metrics that target specific applica-

tions and are more efficient in compression and reconstruction tasks can significantly

advance the proposed framework.

Smart meter functionalities

Since the proposed framework comprises a lossy compression method, a separate

function to accumulate energy consumption per tariff tier is essential for accurate

billing purposes. There are several factors that need to be considered, including

the reliability of the accumulated result and transmission frequency under different

tariff structures, e.g., ToU or real-time prices. Currently, smart meters cannot deliver

this functionality; hence, further research and development are needed to address

this issue in existing and future smart meters. Furthermore, the smart meter should

be able to compute codewords and representations based on the shape-based sim-

ilarity metric above. This requires smart meters capable of edge computing tasks.

Key performance indicators

Key performance indicators (KPIs) are needed to quantitatively measure and

compare the performance of different potential solutions on different challenges

we discuss in this perspective. Some potential KPIs could be general statistics, mem-

ory saving rate, algorithm complexity, recovered time series complexity using Shan-

non information theory, load duration, and frequency domain analysis, to just name

a few. However, more research is needed to identify or develop the right and sys-

tematic KPIs for effectiveness measurements.

Regulations and policies change

As the energy landscape evolves with the deployment of the proposed Smart Meter-

ing Framework 2.0, it is necessary to review regulations and policies to effectively

govern the collection, transmission, storage, and usage of energy data. Current reg-

ulations and policies may not fully account for the unique characteristics and chal-

lenges associated with the proposed framework. For example, monopoly utilities

owning a large database might refuse to be merged into the new framework. The

possible reason is that they may prefer to fully own data in a low resolution rather

than accessing high-resolution data with other utilities under the restrictions. There-

fore, it is essential to conduct research and engage in discussions with policymakers,

industry stakeholders, and other relevant parties to ensure that regulations and pol-

icies are updated to reflect the changing landscape of energy data management.

This may involve considerations such as data privacy and security, data sharing

and interoperability, data quality and accuracy, and fairness and equity in data

usage.

CONCLUSIONS AND OUTLOOK

The current implementations of smart meters lack the required data granularity and

are not fulfilling their potential benefits. In this perspective, we argue that achieving

high-resolution energy data by addressing associated challenges is crucial in real-

izing the true benefits of smart grids for all stakeholders. We discuss the issues
Cell Reports Physical Science 5, 101830, February 21, 2024 15
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with low-resolution data and the issues preventing smart meters from operating in a

truly smart way. We then list potential solutions and introduce a new framework to

enable high-resolution data. The proposed framework consists of a codebook for

each residential user, which contains two sets of data: codewords and representa-

tions. Codewords are unique high-resolution patterns of the user over a day, while

representations are indexes of codewords pointing toward historical data. In the

data compression stage, the smart meter measures the imported/exported energy

at high resolution, computes daily representations using the codewords and sends

only the representation of the day to the data center. The codewords are updated

when new unique patterns are found. In the data reconstruction phase, service pro-

viders can query codewords based on the representations of the user and a certain

temporal range. Smart meters store codewords, while the data center stores

compress representations of users, ensuring that user data remain secure.
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