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Abstract

Existing battery sizing methods tend to oversimplify battery operation within

their sizing frameworks by ignoring several practical aspects of operation. Such

assumptions may lead to suboptimal battery capacity, resulting in significant

financial losses in battery projects. In this study, we compared the most common

existing battery sizing methods in the literature with a battery sizing model that

incorporates more realistic battery operation, specifically using receding horizon

operation, also known as model predictive control. This approach continuously

updates battery decisions based on new data and forecasts, ensuring realistic

operation over the sizing period. In our comprehensive simulation studies, we

quantified the financial losses caused by the suboptimal capacities obtained by

these models for a realistic case study related to community battery storage

(CBS). We developed a case study by constructing a mathematical framework

for CBS and local end users. Our analysis indicates that conventional sizing

strategies can cause financial losses as much as 22% in a simulation study with

84-day out-of-sample data including 120 end users in real wholesale market

scenarios in New South Wales, Australia.

Keywords: Battery sizing, community battery, peak demand, receding horizon

operation, price-responsive consumers
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Indices, Sets and Vectors

n/N Index/Set of end users

j/J Index/Set of receding horizons

h/H Index/Set of time intervals in a receding horizon

HRB Set of time intervals in a rebound horizon

Parameters

β End-user price elasticity

x̂ End-user originally expected consumption (kWh)

x/x Upper/lower bounds of end-user energy consumption (kWh)

∆x End-user total consumption deviation (kWh)

κ End-user short-term discounting degree

τ End-user long-term discounting degree

C init End-user initial solar credits (kWh)

∆h Length of time interval (h)

Ecap CBS capacity (kWh)

SoC/SoC Upper/lower bounds of CBS state-of-charge (%)

λbat CBS annualised per-unit cost ($/kWh·year)

Γ CBS round-trip efficiency (%)

Einit CBS initial state-of-charge (kWh)

λThP CBS throughput cost ($/kWh)

G Available rooftop solar energy (kWh)

λPD Wholesale market pre-dispatch price ($/kWh)
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λRT Real-time wholesale market price ($/kWh)

λImP/λExP End-user import/export energy charge ($/kWh)

λg CBS operator grid usage charge ($/kWh)

λpeak Peak demand incentive ($/kW·year)

Υuser Users aggregated peak demand (kW)

T c CBS duration (h)

Variables

x End-user consumption (kWh)

x+/x− End-user positive/negative net demand (kWh)

xg End-user billable consumption from utility grid (kWh)

Gu Utilised rooftop solar energy (kWh)

δ End-user solar credit offset (kWh)

D End-user (dis)comfort function

C End-user cumulative solar credits (kWh)

P CBS dispatch power (kW)

P ch/P dc CBS charging/discharging power (kW)

E CBS state of energy (kWh)

ϑ+/ϑ− Community positive/negative net demand (kWh)

ϑg Imported energy from the utility grid for charging CBS (kWh)

Υlocal Community peak demand (kW)
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1. Introduction

Community battery storage (CBS) has been recognised as a desirable solu-

tion for behind-the-meter (BTM) generation and demand management both in

practice [1, 2, 3], and in the literature [4, 5, 6]. In Australia, the trial of multiple

CBS projects has led many distribution network service providers (DNSPs) to

design new network tariffs specifically for CBS and end users within the neigh-

bourhood [7, 8]. These tariffs generally incentivise the local use of the system

(LUoS) for CBS located in low-voltage (LV) networks. As these schemes are

designed to attract profit-making entities in the near future [9, 8], it is crucial

to accurately size CBS to maximise the profits of CBS owners.

In recent years, many research studies have been published on battery stor-

age sizing [10]. However, the existing sizing models in the literature do not

consider the practical aspects of battery operation. In these studies, a common

approach is to assume a perfect prediction of power system parameters, e.g.,

electricity prices [11], and power consumption [12], to solve the planning prob-

lem over the entire sizing horizon, e.g., one year [13]. These models guarantee a

fast solution and can be scaled up for longer planning horizons, e.g., ten years.

However, in practice, perfect knowledge of the future, even a couple of hours

ahead, is impossible due to inherent uncertainties; hence, the battery operator’s

decisions can only be made under imperfect forecasts over a limited horizon,

e.g., 24 hours ahead. To address this, many battery sizing studies optimise

system capacity under a perfect foresight scenario and then apply a derating

factor based on empirical percentage of perfect foresight [14]. Others introduce

uncertainty by applying randomly generated noise to the perfect foresight values

over the entire sizing horizon and solve the problem as a one-shot optimisation

[15, 16]. Although convenient, this approach can be misleading in fast-evolving

electricity markets, particularly those with high renewable penetration. In such

environments, the predictability and uncertainty of key optimisation inputs,

such as electricity prices, can degrade rapidly over time due to market volatility

and changes in policy.
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As an alternative to static derating methods, Baker et al. [17] proposed a

battery storage sizing approach based on receding horizon operation (RHO),

also known as model predictive control (MPC). In this operational concept, the

operator solves battery optimisation by predicting the parameters of the power

system for a specified lookahead horizon. The operator then only commits to

the optimised solutions in the first interval of each receding horizon, while the

remaining intervals ensure that the optimisation is not myopic. The optimisa-

tion problem must then be solved consecutively for the next receding horizons

as new forecast data become available, a process that can be time- and resource-

intensive. To address this issue, the authors in [17, 18, 19] coupled all receding

horizons together, rather than solving the optimisation problem sequentially, to

solve them simultaneously as a single optimisation problem. However, this cou-

pling approach can negatively affect the optimal solutions because one horizon

can be strongly influenced by many subsequent shifted horizons, which is not

the way a battery unit operates in practice. This misalignment may eventually

result in suboptimal decisions about battery capacity. In general, while previous

research has introduced the perfect scenario or MPC-based battery sizing meth-

ods, these approaches have not been rigorously benchmarked against a globally

optimal solution. Consequently, the true financial cost of using simplified sizing

techniques remains largely unknown in the literature, particularly in the context

of CBS projects, which are rapidly deployed in Australia. It should be noted

that other operational factors can also influence battery performance and sizing

outcomes, such as variations in efficiency and available capacity [20], caused

by many factors, including real-time temperature and long-term degradation

[21, 22]. Although these detailed aging models are highly relevant for long-term

asset planning and performance evaluation, they fall outside the scope of this

study. Here, we focus specifically on the role of operational control assumptions

during the sizing phase, with particular emphasis on the impact of RHO under

imperfect forecasts.

In this context, the first contribution of this paper is the quantification of

financial losses resulting from the implementation of suboptimal battery capac-
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ities due to simplified battery sizing methods. This is achieved by developing a

mixed-integer linear programming (MILP) model and solving the battery oper-

ation problem using an RHO approach. The second contribution is the reformu-

lation of the approach in [17] for CBS sizing. To ensure accurate quantification,

an exhaustive search is used to determine the global optimal battery capacity

for comparison with suboptimal solutions, allowing a comprehensive evaluation

of the inaccuracies of current sizing models.

2. Local market modelling with CBS

Current CBS trials in Australia allow solar end users (prosumers) within

a local neighbourhood to virtually store their excess solar photovoltaic (PV)

power in CBS in exchange for solar credits [1, 2, 3]. At night, prosumers can

use solar credit to offset their consumption. In addition, the CBS operator

collaborates with an existing electricity retailer to propose a time-of-use tariff

structure with a high tariff during peak demand hours to promote a price-based

demand response. The high peak demand tariff directs local prosumers to use

their solar credit to offset consumption during those hours, typically in the early

evening. Thus, the CBS operator automatically offsets prosumers’ usage in the

first instance of peak-demand hours. Nonetheless, some retailers allow residen-

tial customers to pay for electricity at spot prices obtained in the Australian

National Electricity Market (NEM), together with the network tariffs set by

DNSPs [23]. The NEM operates as a 5-minute real-time (RT) market managed

by the Australian Energy Market Operator (AEMO). However, due to limita-

tions in residential metering, these customers are still billed based on 30-minute

intervals, with prices averaged over six consecutive 5-minute intervals. This

tariff structure enables prosumers to decide when to offset their consumption

depending on RT prices and their available solar credits. The fluctuation of RT

prices also encourages prosumers to practice demand response to minimise their

electricity bills [24]. Therefore, in this paper, we adopt the price-responsive

model from [6, 25] to model end-user behaviour under fluctuations in RT prices,
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while also considering realistic network usage charges from DNSPs when storing

electricity in CBS and consuming energy from CBS.

To accurately model the problem in an imperfect scenario, we solve opti-

misation models using predispatch (PD) prices provided by AEMO [26]. PD

prices are forward-looking market signals with 30-minute intervals generated

by AEMO several hours ahead and updated every 30 minutes. These prices

are derived from a security-constrained linear optimal power flow model that

considers the AEMO demand forecast and bids from market participants [27].

As demand forecasts change and participants rebid throughout the day, the PD

prices fluctuate. Therefore, we use PD prices as electricity price forecasts in

each receding horizon, which is also the case for many electricity retailers [23].

2.1. End-user Model

Although PD prices provide rolling electricity price predictions, there is

still no dataset available for continuously updated forecasts of residential price-

responsive consumption. To this end, we solve the end-user optimisation prob-

lem in an RHO framework to obtain the dynamic consumption behaviour for

each receding horizon. The end-user RHO model is shown in Fig. 1.

Figure 1: A flowchart showing end users RHO framework

We denote the set of end users by N = {1, 2, . . . , |N |}. In RHO, the op-
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timisation is solved each time on a receding horizon that includes the set of

time intervals H = {1, 2, · · · , |H|}, where |H| is the number of intervals in

each horizon, and the optimisation recedes one interval each time. Overall, the

optimisation problem is solved |J | times for all receding horizons, denoted by

j ∈ J = {1, 2, · · · , |J |}, where |J | represents the length of the battery sizing

horizon. For each receding horizon j, the end-user optimisation can be formu-

lated as follows:

min
Ψuser

n,j

Ouser
n,j =

∑
h∈H

[
λPD
j,hx

g
n,j,h + λExP

j,h x−
n,j,h + λImP

j,h x+
n,j,h

+
1 + τn ·h·κn

1 + h·κn
D(xn,j,h)

]
∀n∈N, (1a)

where

D(xn,j,h)=−λPD
max,j

(
1+

xn,j,h−x̂n,j,h

2βn,j,hx̂n,j,h

)
(xn,j,h−x̂n,j,h) (1b)

s.t.∑
h∈HRB

xn,j,h =
∑

h∈HRB

x̂n,j,h +∆xn,j ∀n ∈ N, (1c)

xn,j,h ≤ xn,j,h ≤ xn,j,h ∀n ∈ N, ∀h ∈ H, (1d)

xn,j,h −Gu
n,j,h = x+

n,j,h − x−
n,j,h ∀n ∈ N, ∀h ∈ H, (1e)

0 ≤ x+
n,j,h ⊥ x−

n,j,h ≥ 0 ∀n ∈ N, ∀h ∈ H, (1f)

Gu
n,j,h ≤ Gn,j,h ∀n ∈ N, ∀h ∈ H, (1g)

x+
n,j,h − δn,j,h = xg

n,j,h ∀n ∈ N, ∀h ∈ H, (1h)

Cn,j,h = C init
n,j +

h∑
l=1

(x−
n,j,l−δn,j,l) ∀n ∈N, ∀h ∈H, (1i)
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xn,j,h, x
+
n,j,h, x

−
n,j,h, G

u
n,j,h, δn,j,h, x

g
n,j,h, Cn,j,h ≥ 0

∀n ∈ N, ∀h ∈ H, (1j)

whereΨuser
n,j = {xn,j,h, x

+
n,j,h, x

−
n,j,h, G

u
n,j,h, δn,j,h, x

g
n,j,h, Cn,j,h}. As seen in (1a),

end users want to minimise their electricity cost and discomfort caused by load

shifting. The prosumers’ electricity cost consists of the energy payment at PD

prices, λPD
j,h , for consumption from the grid, xg

n,j,h, and network usage charges,

i.e., λExP
j,h and λImP

j,h , for exported, x−
n,j,h, and imported (consumed) electricity,

x+
n,j,h, respectively. Here, the network usage charges are set by the DNSPs.

The (dis)comfort model is integrated with the time inconsistency and loss

aversion properties of behavioural economics as introduced in [25]. In par-

ticular, time inconsistency is represented by the fraction in the last term of

(1a), which depends on the degree of short-term discounting, κn, and the de-

gree of long-term discounting, τn. On the other hand, loss aversion is mod-

elled by a quadratic function in (1b) that depends on actual consumption,

xn,j,h, expected consumption, x̂n,j,h, price elasticity, βn,j,h, and price reference,

λPD
max,j := max{λPD

j,h |h ∈ H}, which is adopted from [25]. In this context, the

price elasticity βn,j,h indicates the degree to which the consumption of a user

varies according to changes in electricity prices, where smaller values denote

greater inelasticity. In contrast, the price reference λPD
max,j acts as a standard for

users to assess whether the prices during each interval are elevated or reduced.

Constraint (1c) ensures that the demand response is only provided by load

shifting such that in each receding horizon, the sum of actual consumption

remains the same as the total expected consumption and the consumption devi-

ation from the previous receding horizons, ∆xn,j . To make the model realistic,

unlike existing studies, e.g., [28, 6], we enforce the rebound effect of shiftable

loads within the first few hours rather than the whole receding horizon. There-

fore, HRB denotes the rebound horizon such that HRB ⊂ H. Constraint (1d)

sets the lower, xn,j,h, and upper, xn,j,h, bounds of consumption in each in-

terval. Constraint (1e) separates the net demand into exported and imported

(consumed) electricity and restricts them from simultaneously having non-zero
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values through the complementarity constraint (see [29]) in (1f).

In Australia, renewable energy constitutes a large proportion of the energy

mix. This has often led to wholesale prices dropping below zero, sometimes

reaching as low as −$1000/MWh [30]. As a result, the optimal strategy during

these intervals is to curtail solar generation. To do this, we consider ‘used’ solar

energy, Gu
n,j,h, in (1e) and constrain it in (1g). Constraint (1h) determines the

energy imported from the utility grid, xg
n,j,h, after deducting the offset by the

solar credits, denoted by δn,j,h. Solar credits are earned when users export excess

rooftop solar generation to the grid and can be used later to offset electricity

consumption, typically during the evening. The decision to use or conserve these

credits is driven by RT price signals, which requires solving an optimisation

problem to decide whether to use credits immediately or postpone their use for

periods that might incur higher costs. Constraint (1i) tracks the cumulative

solar credit over time, Cn,j,h, where C init
n,j denotes the initial cumulative solar

credit in each receding horizon. Due to the sequential solving of the RHO, we

have C init
n,j =C⋆

n,j−1 and ∆xn,j=
∑j

l=1(x̂
⋆
n,l − x⋆

n,l) as parameters determined by

the previous receding horizons. We define the variables with (⋆) as the optimal

values committed in previous receding horizons. Finally, we define the signs of

the variables in (1j).

2.2. CBS Operation

The solution to the end-user optimisation problem is the changing consump-

tion behaviour over time. As a result, in the CBS optimisation problem, the

uncertain parameter is not only the price but also consumption of the end users,

as shown in Fig. 2. For each receding horizon j, the optimisation problem for

CBS is as follows:

min
ΨCBS

j

OCBS
j =

∑
h∈H

(
λPD
j,hϑ

+
j,h + λgϑg

j,h + λThPP dc
j,h∆h

)
− λpeak(Υlocal

j −Υuser
j ) (2a)
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Figure 2: A flowchart showing the CBS RHO framework

s.t.∑
n∈N

(
x+
n,j,h−x−

n,j,h

)
+Pj,h∆h = ϑ+

j,h−ϑ−
j,h ∀h∈H, (2b)

0 ≤ ϑ+
j,h ⊥ ϑ−

j,h ≥ 0 ∀h ∈ H, (2c)

Υlocal
j ≥ max

(
ϑ+
j,h, max

l∈{1,2,...,j}
ϑ+⋆
l

)
∀h ∈ H, (2d)

Ej,h = Einit
j +

h∑
l=1

(
P ch
j,l −

1

Γ
P dc
j,l

)
∆h ∀h ∈ H, (2e)

Pj,h = P ch
j,h − P dc

j,h ∀h ∈ H, (2f)

−Ecap

T c
≤ Pj,h ≤ Ecap

T c
∀h ∈ H, (2g)

SoCEcap ≤ Ej,h ≤ SoCEcap ∀h ∈ H, (2h)

Einit
j = Ej,h=|H|, (2i)
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P ch
j,h∆h−

∑
n∈N

x−
n,j,h ≤ ϑg

j,h ∀h ∈ H, (2j)

Ej,h, P
ch
j,h, P

dc
j,h, ϑ

+
j,h, ϑ

−
j,h, ϑ

g
j,h,Υ

local
j ≥ 0 ∀h ∈ H, (2k)

whereΨCBS
j ={Ej,h,P

ch
j,h,P

dc
j,h,ϑ

+
j,h,ϑ

−
j,h,ϑ

g
j,h,Υ

local
j }. Similar to the end-user prob-

lem, the CBS operation is solved sequentially with the initial state-of-charge

(SoC), Einit
j = E⋆

j−1, passed from the previous horizon as the initial state in-

put, in which the initial value (that is, j = 1) is set to zero. The objective

of the CBS operator in (2a) is to minimise the net cost. First, it considers

wholesale costs, representing payments to the wholesale market for charging

the CBS and the electricity consumption by local residential users, λPD
j,hϑ

+
j,h.

Additionally, it includes the network usage charge, λgϑg
j,h, which applies when

electricity is imported from the utility grid for charging the CBS. To avoid ex-

cessive cycling of the CBS, a throughput charge, λThPP dc
j,h∆h, is added based

on discharging energy. The last term in (2a) represents the revenue from peak

demand reduction, which is the difference between the prosumers’ peak demand,

Υuser
j = max{

∑
n∈N (x+

n,j,h − x−
n,j,h|h ∈ H)}, and the peak demand after con-

sidering the CBS operation, Υlocal
j . Here, DNSPs set the network usage charge,

λg, and the peak demand charge, λpeak.

Constraint (2b) separates the net demand of the whole neighbourhood into

imported, ϑ+
j,h, and exported, ϑ−

j,h, electricity. To prevent them from simultane-

ously taking non-zero values, complementarity constraints (see [29]) are imple-

mented in (2c). We define the peak demand of the local neighbourhood in (2d),

which considers both the potential maximum net demand in the lookahead hori-

zon and the observed peak demand in previous receding horizons. Constraint

(2e) represents the evolution of the CBS SoC over time, where the charge, P ch
j,h,

and discharge, P dc
j,h, power are defined in (2f). Moreover, in (2e), Γ represents

the CBS round-trip efficiency and ∆h represents the granularity of the intervals.

Constraint (2g) limits the (dis)charging power of CBS with respect to the CBS

capacity and battery duration, T c. Constraint (2h) limits the CBS SoC to the

lower, SoC, and upper, SoC, bounds. To avoid full discharge at the end of each
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receding horizon, constraint (2i) sets the ending SoC equal to the initial SoC.

Constraint (2j) determines the electricity imported from the utility grid for the

CBS charging activity. As mentioned in Section 1, the trial CBS tariffs promote

the LUoS. Thus, there is no cost to charge the CBS using excess PV generation

of the local neighbourhood. In contrast, the CBS operator must pay a fixed

charge, λg, when charging from the grid. Finally, (2k) represents the sign of the

variables. Note that in the CBS operation, the CBS capacity, Ecap, is a known

parameter.

2.3. Ground Truth Cost Calculation

Since we operate the CBS in (2) with respect to the PD prices, it is necessary

to calculate the ground truth cost of the CBS operation by applying the opti-

mised solutions committed from (2) to the RT dispatch (cleared) prices, λRT.

Additionally, in (2a), we assess the revenue from peak demand reduction for

each receding horizon separately. However, in practice, DNSPs typically assess

peak demand on a yearly basis. As a result, we calculate the annual ground

truth cost as follows:

Total cost =
∑
j∈J

(
λRT
j ϑ+⋆

j + λgϑg⋆
j + λThPP dc⋆

j ∆h
)

− λpeak(Υlocal⋆ −Υuser⋆) + λbatEcap, (3)

where Υlocal⋆ = max{ϑ+⋆
j |j ∈ J} and Υuser⋆ = max{

∑
n∈N (x+⋆

n,j −x−⋆
n,j)|j ∈J}.

We also include the cost of CBS, λbatEcap, as part of the total project cost,

assuming a battery life expectancy of 10 years, which is in line with the typical

manufacturer warranty period. Here, we only consider the net cost of CBS and

its operation to provide an accurate comparison among different sizing methods,

as introduced in the subsequent section.

3. Battery sizing methods

3.1. Exhaustive Search for (Exact) Battery Sizing

Since the CBS operates under the RHO regime, we cannot obtain the optimal

CBS capacity in one single optimisation. Instead, the lowest project cost in (3)
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must be determined by examining different values of battery capacity, Ecap, for

CBS operation in (2). Therefore, in this paper, we iteratively assess all possible

CBS capacities with a step of 5 kWh to find the global optimal value.

3.2. One-shot optimisation (W/o RH)

As mentioned in Section 1, a common battery sizing approach is to assume a

perfect prediction of uncertain parameters, i.e., electricity prices and prosumers’

consumption in this case, and solve a planning problem over the entire sizing

horizon. To size the CBS without RHO, we solved a modified version of (2),

where instead of looking at all intervals inH, we only considered the first interval

in H, i.e., h = 1, and sum over j ∈ J in (2a). Moreover, we remove (2i) because

now there is only one ending SoC. We formulate the battery sizing model for

the W/o RH method as follows:

min
ΨWoRH

SWoRH =
∑
j∈J

(
λRT
j ϑ+

j + λgϑg
j + λThPP dc

j ∆h)

− λpeak(Υlocal −Υuser⋆) + λbatEcap, (4a)

s.t. (2b)–(2c), (2e)–(2h), (2j) such that h = 1, ∀j ∈ J, (4b)

Υlocal ≥ ϑ+
j ∀j ∈ J, (4c)

Ej , P
ch
j , P dc

j , ϑ+
j , ϑ

−
j , ϑ

g
j ,Υ

local, Ecap ≥ 0 ∀j ∈ J, (4d)

where ΨWoRH = {Ej , P
ch
j , P dc

j , ϑ+
j , ϑ

−
j , ϑ

g
j ,Υ

local, Ecap}. As Ecap is a decision

variable in this optimisation, we can directly obtain the CBS capacity in a

single optimisation process. Note that we have normalised both λpeak and λcap

to align with the length of the receding horizons. In (4a), we use the actual spot

prices to represent a scenario with perfect foresight. To evaluate the impact of

incorporating uncertainty, as used in [15, 16], we replace the actual spot prices

with PD prices. Hence, in this paper, we perform two scenarios for the W/o

RH sizing method: one using RT spot prices (W/o RH perfect foresight) and

another using 30-minute look-ahead PD prices (W/o RH 0.5-hr PD price).
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3.3. Coupled Receding Horizons (Coupled RH)

In [17], the battery sizing and operation are optimised simultaneously con-

sidering all receding horizons in one optimisation problem. Therefore, to for-

mulate this problem based on the model in (2), we introduce a new constraint,

Einit
j = Ej−1,h=1, which was originally used to set the initial state parameter on

each receding horizon of the CBS operation. We formulate the battery sizing

model for the Coupled RH approach as follows:

min
ΨCoRH

SCoRH=
∑
ω∈Ω

[
1

|H|
∑
j∈Jω

∑
h∈H

(
λPD
j,hϑ

+
j,h + λThPP dc

j,h∆h

+λgϑg
j,h

)]
−λpeak(Υlocal−Υuser⋆)+λbatEcap (5a)

s.t. (2b)–(2k) ∀j ∈ Jω, ∀ω ∈ Ω, (5b)

Einit
j = Ej−1,h=1 ∀j ∈ Jω \ {1}, ∀ω ∈ Ω, (5c)

Ej,h, P
ch
j,h, P

dc
j,h, ϑ

+
j,h, ϑ

−
j,h, ϑ

g
j,h,Υ

local, Ecap ≥ 0

∀h ∈ H, ∀j ∈ Jω, ∀ω ∈ Ω (5d)

where ΨCoRH = {Ej,h, P
ch
j,h, P

dc
j,h, ϑ

+
j,h, ϑ

−
j,h, ϑ

g
j,h,Υ

local, Ecap}. Similar to the

W/o RH method, the optimal Ecap in the Coupled RH approach can be obtained

in a single optimisation process. Because all receding horizons are considered

simultaneously, we need to divide the extended battery sizing duration into

smaller periods ω ∈ Ω, where each period contains |Jω| receding horizons. This

is done to prevent one receding horizon from looking too far ahead into the

future. For example, in [17], each receding horizon was 1-hour long with 10-

minute granularity, equivalent to |H| = 6 in our model. Additionally, their sizing

model considered each period to be one full day, i.e., Jω = 144. In contrast,

our model considers close to one-day look-ahead with 30-minute intervals. As a

result, we set each period ω to one week in our study. This timeframe allows the

sizing model enough flexibility to establish the RHO without allowing receding
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Table 1: Network usage charges and end user elasticity at different time intervals

Interval λExP
j,h (¢/kWh) λImP

j,h (¢/kWh) βn,j,h

01:00–05:00 0 3.3095 [−0.2, −0.3]

05:00–10:00 0 3.3095 [−0.3, −0.5]

10:00–14:00 1.8500 3.3095 [−0.3, −0.5]

14:00–20:00 −27.7957 27.7957 [−0.5, −0.7]

20:00–01:00 0 3.3095 [−0.3, −0.5]

Table 2: CBS specifications and simulation parameters

Battery data Other simulation parameters

Γ 90% xn,j,h 0.5x̂n,j,h

SoC,

SoC

0%, 100% xn,j,h 1.5x̂n,j,h

∆h 0.5 hours |HRB| 12 (6 hours)

T c 2 hours |H| 32 (16 hours)

λbat $80/kWh·year κn [0.1, 0.5]

λThP 3.2 ¢/kWh τn 0.2

λg 1.61 ¢/kWh λpeak 0.33 $/kW·year

horizons looking far into the future to interfere with current calculations. Lastly,

due to the coupled receding horizons, we need to take the weighted sum of all

the receding horizons by dividing over |H| as seen in (5a).

4. Numerical Study

4.1. Simulation Setup

• End user profiles were collected from the Solar Home dataset with 60

solar prosumers and 60 non-solar consumers in New South Wales (NSW), Aus-

tralia [31]. The dataset contains half-hourly electricity consumption and gross

rooftop PV generation in 2012. Due to the increase in rooftop PV capacity
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in recent years [32], we uniformly scaled up the PV generation profiles of all

prosumers by three times, giving an average rooftop PV capacity of 5.1 kWp.

• Electricity prices and network charges were collected for the NSW

region in 2021 [26]. The new network charges for end users, recently tested

in that region, and the CBS tariff were collected from the DNSP in NSW [8].

Table 1 shows the end-user network usage charges at different times of the day,

where the negative value of λExP represents an export reward for rooftop solar

PV energy.

• CBS specifications and simulation parameters are summarised in

Table 2. At any time of the day, the PD prices in the NEM are available for a

minimum of 16 hours ahead [26]. Thus, in our optimisation, the length of one

receding horizon is considered to be 16 hours. The price elasticity of electricity

demand is relatively low and varies depending on the time of day. To capture

this, we randomly generated a price elasticity value, βn,j,h, for each end user

from a uniform distribution based on the time of day. Table 1 shows the time

bands and ranges of the distribution.

• Simulation period was divided into in-sample and out-of-sample peri-

ods. The in-sample period, comprising the second week of each month (84 days

in total) of the selected years, is used to size the CBS capacity. In contrast,

the out-of-sample period, which includes the third week of each month (also

84 days), is used to evaluate and confirm the performance of the different siz-

ing methods in Section 3. The code and data used for our simulations can be

accessed at [33].

4.2. Simulation Results and Discussions

4.2.1. Predispatch prices and end user consumption

The benefit of battery RHO is its adaptability to changes in forecasts over

time. As a result, we require dynamic forecast data to demonstrate this adapt-

ability. Although the (forecast) PD prices can be publicly obtained from the

Australian NEM [26], variations in the consumption behaviour of the end user
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Figure 3: PD prices at different receding horizons. The upper figure depicts average PD

prices from the in-sample period, while the lower figure shows the PD prices of a specific day

in January

Table 3: Optimal CBS capacity and normalised annual cost with daily average cycle for

in-sample and out-of-sample periods

In-sample Out-of-sample
Methods

Capacity

(kWh) Energy charge Peak reduction Total cost Avg cycle Energy charge Peak reduction Total cost Avg cycle

Exact 250 $37.8k
−$13.8k

(114.1 kW)

$47.5k

(+0.0%)

1.01 $53.2k
−$6.2k

(50.8 kW)

$70.5k

(+0.0%)

1.04

W/o RH

perfect foresight

320 $36.3k
−$13.8k

(114.1 kW)

$52.1k

(+ 9.8%)

0.94 $51.0k
−$2.4k

(20.0 kW)

$78.4k

(+ 11.2%)

0.99

W/o RH

0.5-hr PD price

468 $32.9k
−$13.6k

(112.3 kW)

$62.3k

(+ 31.1%)

0.84 $45.6k
−$3.5k

(29.2 kW)

$85.0k

(+ 20.6%)

0.87

Coupled RH 486 $32.8k
−$14.0k

(115.5 kW)

$63.4k

(+ 33.4%)

0.83 $45.4k
−$3.8k

(31.2 kW)

$86.2k

(+ 22.3%)

0.85

are not readily available from any data source. Instead, we obtain these varia-

tions through an analytical model, specifically by solving the optimisation prob-

lem in (1). Figures 3 and 4 show changes in PD prices and aggregated expected

consumption over time, respectively. To provide context, the values indicated
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Figure 4: Realised and expected consumption at different receding horizons. The upper figure

shows the average consumption from the in-sample period, while the lower figure shows the

consumption of the same day as in Fig. 3

by the blue line signify the forecast values obtained using 6 hours of past data;

for example, the value at 20:00 was estimated at the receding horizon start-

ing at 14:00. This dynamic behaviour in end-user consumption is achieved by

incorporating changing PD prices, coupled with the application of behavioural

economic concepts, including loss aversion and time inconsistency, as introduced

in [25]. Furthermore, it can be seen that end users perform load shifting with

relatively smooth curves, except for a sudden jump at 20:00, immediately after

the DNSP peak hours window, which has a network usage charge of more than

27¢/kWh, as shown in Table 1. This behaviour can be observed in real life, as

reported by DNSP after one year of trial tariff [34].

4.2.2. Optimal CBS capacities from different sizing methods

Table 3 shows the optimal CBS capacity and normalised annual total cost

associated with each method. Note that after determining the optimal CBS
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Table 4: Predispatch (PD) prices error analysis for in-sample period

∑
j(λ

PD
j,h − λRT

j,h ) Mean Median SD Skew Kurt

0.5-hr PD (h = 1) 0.082 0.00 1.167 9.96 144.54

16-hr PD (h = |H|) 0.121 0.00 1.350 8.85 103.04

All intervals 0.132 0.00 1.414 8.68 94.39

capacity using various sizing methods, we run the CBS operation model in (2)

and calculate the cost using (3). We also quantify the percentage of financial

losses for the W/o RH and Coupled RH methods compared to the Exact model,

as shown by the percentage values in round brackets. Clearly, the Exact method,

which applies RHO with imperfect forecasts during the sizing stage, provides the

lowest cost in the in-sample period. This method identifies a globally optimal

capacity of 250 kWh using an exhaustive search. The result is then confirmed

using the data from the out-of-sample, which also gives the lowest cost among

the CBS capacities obtained.

It should be noted that the Exact method resulted in the highest energy

charge, which can be attributed to its smaller battery capacity (250 kWh).

While this smaller size limits the battery’s ability to perform energy arbitrage,

the trade-off ultimately delivers the lowest overall cost to the community due

to the combination of a lower battery cost and a substantial reduction in the

cost of peak demand. This highlights the importance of careful sizing during

the planning phase, where achieving optimal cost balance is more critical than

simply minimising one component of the cost equation. To further illustrate this

trade-off, Fig. 5 shows the variation in individual cost components across a range

of CBS capacities for in-sample data. As CBS size increases, peak demand is

reduced, contributing to higher peak reduction revenue. However, this benefit

gradually saturates, while the energy charges decrease only marginally. As a

result, the total cost curve reaches its minimum at 250 kWh and begins to

increase beyond this point due to the linear growth of capital cost.
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Figure 5: Breakdown of annual cost components across different CBS capacities for the in-

sample data. The total cost (yellow line) reaches its minimum at 250 kWh, indicating the

optimal balance point between investment and operational savings.

One key consideration when choosing between methods is computational

efficiency. The Exact method requires an exhaustive search, making it compu-

tationally expensive and the longest to run. However, this additional effort is

justified because it occurs during the planning phase, where the priority is to

obtain accurate results rather than speed. Even so, the computational time for

the Exact method is reasonable, taking less than a day to complete. On the

other hand, one-shot methods such as W/o RH and Coupled RH are signifi-

cantly faster, with runtimes of only a few minutes, but come at the expense of

suboptimal battery size, as shown in the table.

Next, we see that the optimal solution obtained by the Coupled RH method,

as proposed in [17], returned the highest CBS capacity, resulting in the highest

cost and financial losses. This can be attributed to errors in PD prices, as

can be seen in the top panel of Fig. 3 and Table 4. The analysis shows that

PD prices are more accurate if they are closer to RT, as shown by the lower

mean and standard deviation (SD) in h = 1 than in h = |H| and all intervals

combined. Furthermore, high kurtosis indicates that although most errors in

PD prices cluster around the distribution mean, there are a few significant

outliers. Mostly, these outliers lie on the right-hand side of the distribution

21



Perfect foresight RH operation
20

0

20

40

60

80

Co
st

 (k
$)

+72.5%

Total cost
CBS cost
Energy charge

DNSP charge
CBS Opex
Peak reduction

Figure 6: Comparing hypothetical cost from the optimisation under the W/o RH perfect

foresight model vs cost from RH operation with imperfect forecasts (realistic operation) model

on 320 kWh CBS in the in-sample period

mean, as indicated by the positive skew. Overall, this shows that PD prices

generally overestimate true dispatch prices. Consequently, sizing methods that

rely heavily on PD prices during the sizing phase, which are the Coupled RH

and W/o RH with uncertainty approaches, are prone to oversizing. The W/o

RH with uncertainty method, based on [15, 16], uses only the 0.5-hour-ahead

PD prices as input for a one-shot optimisation over the entire sizing horizon.

While this introduces some level of forecast uncertainty, the method does not

dynamically update these forecasts at each interval as would occur in a real-time

RHO framework. As a result, it fails to reflect the evolving nature of operational

conditions and the continuous adjustment of forecasts that are fundamental to

realistic battery operation. Similarly, the Coupled RH method, although it

includes a RHO structure, uses PD prices generated for future intervals that

would not be available in a real-time setting. This assumption allows future

forecast errors to influence current decisions, which deviates from how RHO is

implemented in practice.

Although the W/o RH method with perfect foresight, as adopted in [11, 12],
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produces the storage size closest to the global optimal value, it still oversizes

the CBS capacity, leading to financial losses of approximately 9.8% and 11.2%

in the in-sample and out-of-sample periods, respectively. This behaviour can

be explained by the under-utilised CBS capacity in actual operation. Figure 6

compares the total costs of CBS capacity of 320 kWh between perfect foresight

and RHO with imperfect forecast scenarios. Since the CBS capacity of 320 kWh

is the optimal solution from the W/o RH method with perfect foresight, its cost

breakdown can be obtained directly from the optimised solutions in (4). As a

result, it represents the minimum cost that the 320 kWh CBS can achieve. In

contrast, the cost breakdown for the RHO with imperfect forecasts is obtained

by running the CBS operation model in (2) for the 320 kWh CBS. It can be

seen that the total cost difference lies mainly in the energy charge and revenue

from peak demand reduction. While the energy charge depends heavily on the

PD prices, the revenue from peak demand reduction depends greatly on the

end-user (peak) consumption forecast.

The under-utilisation of CBS in the actual operation is also reflected in the

daily average CBS cycle, as shown in Table 3. Due to the imperfect forecast of

price and consumption variations, CBS may overlook opportunities for energy

arbitrage. This can lead to reduced daily charging and discharging activities,

particularly when dealing with higher CBS capacities. In both in-sample and

out-of-sample studies, the battery size obtained from the Exact method expe-

riences almost one cycle per day, which is the default warranty term across

battery manufacturers.

4.2.3. Impact of CBS capacity on peak demand reduction

Contrary to the prevailing view, a higher CBS capacity does not guarantee

a greater reduction in peak demand. It can be observed in the out-of-sample

period in Table 3 that the lowest CBS capacity (250 kWh) results in the high-

est peak demand reduction (50.8 kW). As previously explained, the ability to

reduce peak demand depends greatly on the end-user (peak) consumption fore-

cast. It is shown in Fig. 4 that predicted consumption (e.g., the blue line)
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could be higher than actual (realised) consumption. Consequently, the CBS

optimisation model miscalculates the actual peak demand and charges the CBS

in earlier intervals, causing a new peak for the local neighbourhood. The higher

the maximum CBS power, the higher the new peak, causing a lower reduc-

tion in peak demand. This issue has also been observed in real life in which

a 1.1MW/2.15MWh battery in the distribution network caused a higher peak

demand when performing energy arbitrage [35]. Thus, it is crucial to ensure

that CBS operates without detrimentally impacting distribution networks and

remains a vital area for research.

5. Conclusion

In this paper, we shed light on the impact of simplified models in state-of-the-

art battery sizing studies, namely the W/o RH and Coupled RH approaches. To

accurately quantify the financial losses from these simplifications, we developed

a mathematical framework for a CBS-related business model using trial tariffs

from an Australian DNSP. We showed that the Coupled RH technique produced

the least accurate results with significantly higher cost and CBS capacity than

the Exact model, which considers the practical battery RHO. Although the W/o

RH method, under perfect foresight, resulted in oversized battery capacity, the

resulting financial losses were less significant. Lastly, we highlight a potential

scenario in which CBS can negatively affect distribution networks by introducing

new peak demand due to CBS arbitrage.

Key findings of this study:

• The RHO approach with imperfect forecasts (Exact model) results in the

most financially efficient CBS capacity.

• The Coupled RH method leads to significant oversizing and cost overesti-

mation due to unrealistic forecast assumptions.

• The W/o RH method, although based on perfect foresight, performs mod-

erately well but still introduces bias due to oversizing.
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• CBS arbitrage, if not carefully managed, can shift demand and create new

peak load issues in the distribution network.

In our future work, we aim to extend this analysis to include other market

services provided by CBS and explore profitable business models under evolving

tariff structures.
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