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Abstract

A high number of electric vehicles (EVs) in the transportation sector necessitates an advanced schedul-
ing framework for e-mobility ecosystem operation to overcome range anxiety and create a viable business
model for charging stations (CSs). The framework must account for the stochastic nature of all stakehold-
ers’ operations, including EV drivers, CSs, and retailers and their mutual interactions. In this paper, a
three-layer joint distributionally robust chance-constrained (DRCC) model is proposed to plan day-ahead
grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operations for e-mobility ecosystems. The proposed three-
layer joint DRCC framework formulates the interactions of the stochastic behaviour of the stakeholders in
an uncertain environment with unknown probability distributions. The proposed stochastic model does not
rely on a specific probability distribution for stochastic parameters. An iterative process is proposed to solve
the problem using joint DRCC formulation. To achieve computational tractability, the second-order cone
programming reformulation is implemented for double-sided and single-sided chance constraints (CCs). Fur-
thermore, the impact of the temporal correlation of uncertain PV generation on CSs operation is considered
in the formulation. A simulation study is carried out for an ecosystem of three retailers, nine CSs, and 600
EVs based on real data from San Francisco, USA. The simulation results show the necessity and applicability
of such a scheduling framework for the e-mobility ecosystem in an uncertain environment, e.g., by reducing
the number of unique EVs that failed to reach their destination from 272 to 61. In addition, the choice of
confidence level significantly affects the cost and revenue of the stakeholders as well as the accuracy of the
schedules in real-time operation, e.g., for a low-risk case study, the total net cost of EVs increased by 247.3%
compared to a high-risk case study. Also, the total net revenue of CSs and retailers decreased by 26.6% and
10.6%, respectively.
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Nomenclature

Abbreviation

CCs Chance constraints

CGU Conventional generation unit

CSs  Charging stations

DRCC Distributionally robust chance-constrained
ESS Energy storage system

EVs Electric vehicles

G2V Grid-to-vehicle

RES Renewable generation resources

SOC  State of charge

V2GE  Vehicle-to-grid

VCS Virtual CS

Indices

e,i,r  Index for EVs, CSs, and retailers, respectively
m,n  Index of distribution network nodes

t Index for hours

Parameters

At Time interval (s)

BV /eSS /e Theoretical risk parameter in each layer
nSY /nCH Efficiency of CGU/chargers at CS 4 (p.u.)
nt/n. Efficiency of EV e’s battery in G2V /V2G mode (p.u.)
Ye Power consumed by EV e per km (kWh/km)
P Probability distribution

Dt Shortest driving distance between CS ¢ and destination of EV e at time ¢ (km)



Ge EV e’s driver preference for minimum revenue increase during V2G operation ($)

Ke EV e’s driver preference for maximum extra distance to lower the cost compared to minimum route

(km)
Ot Shortest driving distance between origin of EV e and CS i at time ¢ (km)
a/a  Profit margin of the retailer
p~/p~ Maximum/Minimum electricity prices offered by CSs for V2G service ($/kWh)

p"¢/p"® Maximum/Minimum electricity prices offered by retailers to CSs ($/kWh)

B Capacity of ESS at CS i (kW)

%
—GU
E

%

JE;" Capacity of CGU/PV system at CS i (kW)

E, Capacity of EV e’s battery (kWh)
E; Capacity of CS i (kW)
B "

K3

Capacity of chargers at CS ¢ (kW)
—CS —re . . . . .
it [it  Maximum number of iterations in CS/retailer layer

—CH

N; Maximum number of chargers in CS ¢

Pt/ Py, . Maximum/Minimum active power flow between node m and n (kW)
Qunit/ Qm’n_’t Maximum/Minimum reactive power flow between node m and n (kVar)
71 ¥ [rPV Maximum/Minimum ramping rates of PV generation

SOC./SOC, Maximum/Minimum SOC of EV e (p.u.)

W;ESS/M;ESS Maximum/Minimum SOC of ESS at CS i (p.u.)

p?*°  Natural gas price at time ¢ ($/m?)

Ye Covariance of initial SOC of EV e

EE Y Covariance of PV generation in CS i at time ¢

T Covariance of wholesale electricity market prices at time ¢

AV, /AV,, Lower/Upper limit of voltage deviation at node m

Do EV e’s driver preference for minimum cost reduction during G2V operation ($)

DO;,. Driving distance of EV e to closest CS at time ¢ (km)



(/’)\t,e,i Shortest driving distance between origin of EV e and the nearest CS at ¢ (km)
pYM - Mean wholesale electricity market price at time ¢ ($/kWh)

570‘60& Mean of initial SOC of EV e

EBV [2CS JZr¢ Ambiguity set in EV/CS/retailer layer

Cte Shortest driving route to reach the destination directly from origin of EV e at time ¢ (km)
a End of day target SOC

b,c,d, f Cost of battery degradation parameters

bm,n/gm,n Susceptance/conductance of distribution line between node m and n

HV  Heat value of fuel on the operation of gas turbine-generator (kW h/m?)
it“9/it™® Number of iterations in CS/retailer layer

SOCd SOC of EV e at the end of the day (p.u.)

VCS Virtual charging station

e A vector of ones

Sets

B,E,R,S, T, Fy, Fy Sets of Nodes, EVs, retailers, CSs, hours, first optional trip time, and second optional

trip time, respectively
Variables
Bt Binary variable for retailer r by CS ¢ at time ¢
Ab,,+ Voltage angle deviation at node m at time ¢
AV, Voltage magnitude deviation at node m at time ¢
Avm,t Voltage magnitude deviation obtained from the lossless power flow solution at node m at time ¢
Tye,i/I; e Binary variable for CS ¢ for charging/discharging EV e at time ¢
Kt,r A random variable with zero mean and covariance matrix 7; for retailer r at time ¢
We A random variable with zero mean and covariance matrix 3. for EV e
(o Binary variable for charging/discharging ESS at CS i

pﬁiG Electricity price sold to the aggregator by CS ¢ at time ¢ ($/kWh)



pii/pr.; Electricity price offered by CS i at time ¢ for charging/discharging EVs (8/kWh)

0m,:  Voltage angle at node m and time ¢

A\t,eﬂ- Sum of charging and discharging power of EV e in the nearest CS at time ¢

Pi.i/ Py Electricity price offered by the closest CS to EVs at time ¢ in G2V/V2G mode ($/kWh)
?ﬁv Mean local PV generation of CS 7 at time ¢ (kW)

&t A random variable with zero mean and covariance matrix Ef V for CS i at time ¢

Ai i Sum of charging and discharging power of EV e in CS ¢ at time ¢

Prnt/Qmont Active/Reactive power flow between node m and n at time ¢ (kW /kVar)

WM
Pt

o/ QﬂM Active/Reactive power purchased/provided from/by the wholesale market by retailer r at time

t (kW/kVar)
SOCy . SOC of EV e at time ¢ (p.u.)
Vint  Voltage magnitude at node m and time ¢
X/ ei/Xi.i Charging/Discharging power of EV e at CS i at time ¢ (kW)
Y:/Y;; Charging/Discharging power of ESS of CS i at time ¢ (kW)
YtﬁU Power produced by CGU system of CS i at time t (kW)
Y/ ,./Qr5 . Active/Reactive power purchased/provided from/by retailer 7 by CS i at time ¢ (kW /kVar)
pis-  Electricity price sold to CSs by retailer r at time ¢ (3/kWh)
)’(\;m/ft‘“ Charging/discharging power of EV e in the nearest CS at time ¢
Gt.e,i/It,e,i Additional variables for double-sided CC reformulation in EV layer

Z¢r/li» Additional variables for double-sided CC reformulation in retailer layer

zti/ i /Usi/ Vi Additional variables for double-sided CCs reformulation in CS layer

1. Introduction

With the increasing adoption of electric vehicles (EVs) in the transportation sector and the rising num-
ber of charging stations (CSs) equipped with renewable generation resources (RES), the application of a
coordinated vehicle-to-grid (V2G) and grid-to-vehicle (G2V) operation of e-mobility ecosystems has become
inevitable under system-wide uncertainties. While day-ahead scheduling can reduce the range anxiety of

the EV drivers, the actual driving requirements of the drivers may not be fulfilled by using a deterministic



scheduling framework due to the existence of stochastic parameters; hence leading to ineffective outcomes
and drivers’ disappointment. In fact, ignoring the impact of the uncertainties in an e-mobility ecosystem
may result in significant financial losses for all stakeholders and introduces new challenges for power system
operation. Therefore, it indicates the importance of a scheduling framework that accounts for the different
sources of uncertainty of the e-mobility ecosystem operation.

The major sources of uncertainty in the future e-mobility ecosystem originate from the EV drivers’ be-
haviour, the unpredictable nature of RES at the CSs and the wholesale electricity market prices [1-4]. To
consider these sources of uncertainties in the scheduling problem, various approaches have been proposed
in the literature, including robust optimization and scenario-based stochastic programming, which are com-
monly used to characterise the uncertainties in the transportation sector [5-7]. However, each of these
approaches poses certain challenges. An adequate number of scenarios for scenario-based methods must
be considered to sufficiently represent the parameters’ stochasticity. This is because the performance of
the stochastic models depends on the specified scenarios. More often than not, it requires extra computa-
tional time; hence intractable in some cases. In robust optimization approaches, the worst-case scenario is
considered, which may lead to the most conservative solutions [8]. Also, it is difficult to define a proper
probability distribution function for stochastic parameters. To properly address these challenges in stochas-
tic programming, a distributionally robust chance-constrained (DRCC) programming has been developed
to consider a moment ambiguity set, which encompasses a family of probability distributions with the first-
and second-order moments. Also, DRCC programming allows capturing the temporal correlation of the
uncertain parameters by using an ambiguity set with mean and covariance matrix obtained from empirical
data. In the following subsections, a comprehensive literature review is presented, followed by a statement

listing the contributions of this paper.

1.1. Literature review

In the last decade, numerous research papers investigated EVs’ G2V and V2G scheduling problems in an
uncertain environment, which can be categorized into (1) scenario-based methods, (2) robust optimization-
based methods, and (3) chance-constrained (CC) optimization-based approaches. In the first category,
principles of stochastic programming are used for e-mobility ecosystem scheduling. For instance, a scenario-
based scheduling scheme for the V2G service was developed in [9]. The availability of plug-in EVs connected
to the smart grid was considered an uncertain parameter. The optimal scheduling was obtained by minimizing
the overall load variance in the grid. A stochastic optimization model was proposed in [10] to obtain an
optimal bidding strategy for the EV aggregator. The uncertainties from the electricity market and EV
charging, including the availability and charging pattern of different types of EVs were taken into account in
the stochastic optimization model to maximize the profit of the EV aggregator. In [11], a scenario-based risk-
constrained stochastic approach was proposed to obtain optimal scheduling of plug-in EVs by aggregators
by maximizing their profit in day-ahead and reserve markets. In these studies, a range of parameters, e.g.,

renewable generation, state of charge (SOC) upon arrival, etc., were treated as stochastic parameters. In



[12], a two-stage scenario-based stochastic program was developed with a rolling horizon for scheduling EVs
in G2V operation to meet different grid requirements. The goal was to minimize the difference between EVs’
actual and target SOC in a given time period. The arrival and departure times and the initial and target
SOC of EV batteries were considered uncertain parameters. A two-stage stochastic model was developed
in [13] to optimize the investment decision and operational cost of EVs in the first and second stages,
respectively, considering energy consumption and available charging times as the uncertain parameters. A
hidden Markov model was used to generate scenarios in that study. In [14], an EV charging scheduling model
was presented to minimize the mean waiting time of EVs at CSs with multiple charging points and RES. The
EV arrival, the intermittency of the RES, and the electricity prices were considered uncertain parameters
and were described by independent Markov processes. In [15], optimal control of a CS with a PV system was
investigated based on a finite-horizon Markov decision model under uncertainties of EV drivers and dynamic
electricity prices. Then, the total operation cost of the CS was minimized, considering the V2G services and
battery degradation. In [16], a two-stage scenario-based stochastic framework was developed for modelling
the optimal network of CSs, aiming to find the optimal CS for plug-in hybrid EVs. In that study, stochastic
parameters were the battery demand, initial SOC, preferences for charging, and RES generation. In the
first stage, the deterministic problem was solved, leading into the second stage, where the final decision was
made considering the uncertainties. In [17], a dynamic stochastic optimization problem was formulated to
determine optimal EV charging cost considering electricity prices, RES production, and load as stochastic
parameters. The authors in [18] proposed a predictive framework by accounting for the uncertainties of
EV drivers to achieve cost-effective solutions. In that study, a kernel-based method was used to estimate
uncertain parameters during G2V operation.

The second group of studies explored the application of robust optimization for the e-mobility ecosystem
operation problem. For example, a multi-objective bi-level stochastic robust optimization problem was
proposed in [19] to determine cooperative day-ahead economic-environmental scheduling of the plug-in hybrid
EV fleets and a wind farm. In [20], a bi-level robust optimization model was formulated to optimize the
design of a CS considering uncertainties in the real-time operation of the CS, including the electricity
prices, RES, and the number of EVs. In [5], a robust day-ahead scheduling approach was developed for EV
charging in a stochastic environment to deal simultaneously with EV drivers’ requirements and distribution
network constraints. Several uncertainties were considered, including daily trip distances and arrival and
departure times. Furthermore, conservative day-ahead assumptions were considered in the proposed model
to address the negative effects of uncertainties. In [21], a robust optimization-based unit commitment model
was developed for a system with thermal generators and EV aggregators in a day-ahead V2G scheduling
problem. Then, the robust optimization model was reformulated as a deterministic mixed-integer quadratic
program using the explicit maximization method, where the single uncertain parameter was the available
energy capacity of each EV aggregator. In [22], the robust Stackelberg game was used to investigate the

interactions between an aggregator as the leader and several plug-in hybrid EVs as the followers for charging



scheduling under energy demand uncertainty. The application of cooperative and non-cooperative games
was investigated to obtain charging schedules and electricity prices for EVs by maximizing the utility of
the aggregator. A deterministic optimization problem for optimal EV charging and its robust formulation
were compared in [23] under uncertainty of electricity prices. Trade-offs between the optimality of the cost
function and robustness of charging scheduling were investigated, and stability of robust charging schedules
was obtained concerning uncertain electricity prices. In [24], robust scheduling of EV aggregators’ operation
was investigated under electricity price uncertainty to maximize their profit. In [25], a Stackelberg game
was proposed for the EV aggregator (as the leader) and EVs (as followers) to determine optimal day-ahead
charging and frequency reserve scheduling aiming to balance the benefits of the players in the game. A robust
optimization approach investigated EVs’ optimal schedules under uncertain frequency regulation signals.

Several studies in this field have investigated the application of CC optimization. For instance, to
consider the stochastic nature of the EV drivers in [26], a CC optimization problem of EV aggregators and
the distribution system operator was developed as a mixed-integer quadratic program. The goal was to
reduce the congestion in the distribution network with many EVs. In [27], the CC programming was used
to develop a day-ahead scheduling strategy for an EV battery swapping station, where EVs, the number of
swapped batteries and PV generation were the source of uncertainties, described by a probabilistic sequence.
In [28], a two-stage program for the energy management system of the distribution networks was presented
with EVs and RES. In the first stage, a CC model was solved to obtain the optimal operation of CSs and
battery swapping stations under uncertainties of RES generation. In the second stage, the EV charging
power was determined to meet the EV’s charging demand following the optimal operation of CSs.

Based on the comprehensive literature review presented above, we identified four gaps in knowledge

concerning EV scheduling in an e-mobility ecosystem as follows:

e G1: The interactions between stochastic parameters originated from different stakeholders in an e-
mobility ecosystem were ignored because every stakeholder’s operation was optimized individually.
In other words, the mutual impacts of the stochastic behaviour of the stakeholders in an uncertain

environment have not been investigated in the existing studies. We tried to fill this gap by C1;

e GG2: Specific probability distribution functions were assumed for modelling of stochastic parameters,
which are an estimation of the true underlying stochastic model [29]. We addressed this issue by

defining an ambiguity set and solved the problem using DRCC reformulation in C1;

e G3: The proposed CC models in the literature treated the lower and upper bounds as two single-sided
CCs, which may lead to over- or under-estimation of the parameters; hence constraints violation in

reality. This shortcoming is addressed by C2;

e G4: The impact of temporal correlation of PV generation uncertainty on CSs operation has not been

investigated in a CC formulation for an e-mobility ecosystem , which is covered in our paper by C3.



1.2. Main Contributions

In this paper, a three-layer joint DRCC framework is proposed to schedule V2G and G2V operation in
the day ahead for an e-mobility ecosystem, including EVs, CSs, and retailers in an uncertain environment
with unknown probability distributions. In an attempt to facilitate the investigation of an uncertain e-
mobility ecosystem, the interactions between the stochastic nature of the three stakeholders are considered
in the proposed model. A family of probability distributions with the same mean and covariance matrix
called a moment-based ambiguity set is defined to solve a stochastic program without relying on a specific
distribution function. An exact second-order cone programming reformulation of joint DRCC day-ahead
scheduling framework is developed, which ensures that violation of both upper and lower limits of a constraint
remains small for the worst-case probability under the ambiguity set. Furthermore, the temporal correlation
of the PV system generation in each time interval is considered in the joint DRCC model.

The main contributions of this paper addressing the gaps mentioned in Section 1.1 are:

e C1: Formulating the interactions of the stochastic behaviour of stakeholders in an e-
mobility ecosystem: The proposed three-layer joint DRCC framework allows scheduling V2G and
G2V operations in the day ahead for an e-mobility ecosystem, including EVs, CSs, and retailers in an
uncertain environment with unknown probability distributions. Therefore, the interactions between

the stochastic parameters of the three stakeholders are captured in the proposed framework.

e C2: An exact reformulation of DRCC day-ahead scheduling for e-mobility ecosystem: An
exact second-order cone programming reformulation of the joint DRCC is developed in this application,
which ensures that violation of both upper and lower limits of a constraint remains small for the worst-
case probability under the ambiguity set. To the best of our knowledge, this has not been done in this

field.

e C3: Temporal correlation of PV generation: The temporal correlation of the PV system gener-
ation is considered in the joint DRCC model, which allows us to see its impact on the operation of the

entire ecosystem.

The rest of this paper is structured as follows: Section 2 presents the problem definition and describes
the stochastic G2V and V2G framework, including the three stakeholders. It is followed by the proposed
three-layer joint DRCC formulation in Section 3. In Section 4, an ecosystem based on 600 EVs, nine CSs,
and three retailers is devised for simulation study and the results are discussed. The concluding remarks are
presented in Section 5. In Appendix A, reformulation of the single-sided and double-sided CCs in EV, CS,

and Retailer layers is demonstrated and explained.

2. Problem Definition

This paper offers a three-layer joint DRCC scheduling framework, where DRCC model is developed for

each stakeholder; hence, three layers. In each layer, the uncertainty of each player is modelled using a



moment-based ambiguity set consisting of a family of probability distributions for each uncertain parameter.
The ambiguity set is formed using the first- and second-order moments, i.e, mean and covariance, of available
historical data.

In the proposed ecosystem, illustrated in Fig. 1, we consider R number of retailers, indexed by r €
{1,2,..., R}. Retailers purchase electricity in the wholesale market to sell it to CSs. Therefore, wholesale
electricity price at time ¢ is retailers’ major source of uncertainty. There are S number of CSs in the
ecosystem, indexed by i € {1,2,..., S}, that are physically located in the scheduling area. They operate at
the distribution network level and provide V2G and G2V services to EVs. Without loss of generality, it is
assumed that each CS possesses a small gas turbine/diesel generator as a conventional generation unit (CGU),
PV, and energy storage system (ESS) to supply electricity to EVs during G2V operation. Also, CSs purchase
electricity from EVs and sell it in the wholesale electricity market through aggregators [30]. Therefore, PV
generation is the main source of uncertainty in the CS layer. EVs, in turn, affect the operation/profit of
CSs and retailers by their preferences, day-ahead travel plans, initial SOC, time of availability, etc., which
is reflected in their G2V /V2G schedules. During a typical day, EVs can have two kinds of trips: mandatory
and optional. An EV can have multiple mandatory and optional trips during a day [30]. While a mandatory
trip must be fulfilled at any cost, the optional trips will be selected only if the prices are right for G2V
and/or V2G services. In other words, an optional trip, as opposed to a mandatory trip, allows EV drivers
to take advantage of cheap G2V or expensive V2G services outside of the mandatory trip time frame, thus
reducing their overall cost. In our previous paper [30], we have shown that the optional trips can improve the
practical aspects of the EV scheduling problem, facilitate higher participation in the G2V and V2G services,
and enhance convenience and flexibility in EV scheduling. It is assumed that EV drivers are daily commuters
who leave for work in the morning (first mandatory trip) and return home in the evening (second mandatory
trip). Between the two mandatory trips (for example, during lunchtime), EV drivers have a chance for a
V2G or G2V trip (optional), so they can declare it in their daily plan to the scheduling entity. In this paper,
it is assumed that each EV can have two optional trips between mandatory trips. In this approach, each
EV driver is allowed to nominate one or two optional trips during a day to reduce its cost. Finally, EVs
with a known location and initial SOC, which is the source of uncertainty in the EV layer, seek G2V and
V2G plans for their combined mandatory and optional trips to minimise their overall cost while fulfilling
their preferences. A day before the scheduling day, EV drivers send their plan to the scheduling centre, e.g.,
a cloud-based scheduling system, where the scheduling problem is solved for the day-ahead operation of the
ecosystem. The optimal schedules will then be communicated back to the EV owners. Please note that most
EV drivers are commuters; hence, there is no day-to-day change in their travel plan. Therefore, they do not
need to send a new travel plan daily. The driving routes between CS i and the origin of EV e in each trip
are known, and only one of the CSs might be selected for EV e. Thus, two binary variables are assigned to
each CS for the G2V and V2G operation of the EV e in each interval. The virtual CS (VCS) is considered

for the case in which the most economical decision for EV e is not to be charged nor discharged in a trip.
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Thus by selecting a VCS, EV e reaches the destination from its origin without charging or discharging, while
the EV’s preferences and constraints are satisfied. The only difference between a mandatory and optional
trip is that the driving route of a VCS is zero in an optional trip. Please see [30] for further details about

our modelling approach.
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Figure 1: Schematic diagram of the e-mobility ecosystem.

3. The Proposed Framework

In this section, the day-ahead joint DRCC V2G and G2V scheduling framework, which includes several
uncertain and deterministic constraints, is presented for each layer based on the deterministic model formu-
lated by the authors in [30]. A general formulation looks like Eq. 1, which finds minimizers z to f : R” — R
as the objective function of a CC program subject to a set of deterministic constraints (D) and stochastic
constraints (H (z,\) <0,H : R" x A — R™). H is needed to satisfy any probability distribution (P) from
the ambiguity set (Z) at a given confidence level (1 -¢) € (0,1).

= mm{f(r) txE D,IiPIgIF’[)\ eN:{H(z,\)<0}]>1- e}. (1)
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In the joint DRCC, the uncertain parameter is modelled by u + w, where p is the mean of the uncertain
parameter and w is a random variable with zero mean and covariance matrix . The ambiguity set is defined

by

E={PeE(R") :Ep[w], Ep[ww’] = =}. (2)

In the literature, moment-based and metric-based ambiguity sets are widely used. A moment-based am-
biguity set includes all probability distributions with identical mean and covariance. In the metric-based
ambiguity set, however, a ball is defined in the space of distribution functions. The centre of the ball is the
empirical distribution, and the ball is built around the centre using a probability distance function such as
¢-divergence or Wasserstein metrics [31, 32]. Although the metric-based ambiguity set leads to a relatively
stronger performance, the moment-based ambiguity set is proven to be more tractable [32]. For instance,
the authors in [32] showed that a distributionally robust model constructed based on the Wasserstein metric
is more computationally expensive and is not cost-effective compared to the moment-based ambiguity set.
Therefore, we preferred the moment-based ambiguity set in our study, considering the size of our optimiza-
tion problem involving three layers of sequential games. The DRCC models for EV, CS, and Retailer layers
are presented in Section 3.1, 3.2, and 3.3, respectively. The exact reformulation of the single-sided and
double-sided CCs are presented in Theorems 1 and 2 in [33]. The reformulation of our optimization problem
is described in Appendix A.

The proposed three-layer scheduling framework is solved by an iterative approach shown in Fig. 2. The
retailers estimate wholesale electricity prices using historical data in the first iteration. Then, the prices are
passed on to the CS layer. In this iteration, the prices are only inflated to consider the CSs’ profit margin.
Then, the CSs’ will determine their prices accordingly (both G2V and V2G) and send them to the EV layer,
where the first DRCC problem will be solved in the first iteration. The DRCC problem will be solved in the
EV layer under the uncertainty of the EV’s initial SOC. The results are the EVs’ charging and discharging
power and selected CSs for every EV during each trip. The decision to select a CS is based on rationality
(i.e., cost reduction) and comfort (i.e., drivers’ preferences). Upon receiving the results from the EV layer,
the CS layer solves the DRCC problem to obtain the new G2V and V2G prices according to the reaction
of EVs. This inner loop between CS and EV layers, as shown in Fig. 2, will continue until the convergence
criterion of the DRCC problem in the CS layer under PV generation uncertainty is satisfied. Afterwards,
selected retailers and the amount of purchasing power from each retailer will be communicated to the retailer
layer. Then, the DRCC problem in the retailer layer is solved considering the uncertainty of the wholesale
electricity prices. In the retailer layer, new electricity prices will be determined according to the collective
reactions of the CSs and EVs to the original prices. The second iteration of the outer loop, as shown in
Fig. 2, starts with the new retailers’ prices. This iterative process will be terminated once the difference
between the relevant objective functions in the last two iterations for inner and outer loops is less than or

equal to 0.001.
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Figure 2: Flowchart of the three-layer joint DRCC problem

3.1. Joint DRCC Model in the EV Layer

The proposed DRCC model in the EV layer minimises the net cost of EV operation during V2G and G2V
services. The proposed problem is constrained by a set of distributionally robust CC in Egs. (3d), (3e), (3j),
and (3k). Equations (3b) and (3c) indicate the sum of the charging and discharging power of EV e in CS
¢ and the nearest CS, respectively, at time t. Equation (3d) signifies that under the worst distribution in
ambiguity set for the EV layer (£¥Y), the probability of maintaining the SOC level of EV e within a lower
and upper bound at all times must be greater than or equal to a given confidence level. The DRCC in
Eq. (3e) points to fulfil target SOC of EV e at the end of the day within a permissible range (i.e., between
the target and maximum SOC). Admissible charging and discharging capacity of the chargers at CS i are
imposed by Eqs. (3f) and (3g). To select one CS for either G2V and V2G services by EV e at time ¢,

sum of the binary variables of CSs must be less than or equal to one, as in by Eq. (3h). Furthermore,
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Eq. (3i) guarantees that the number of used chargers at a CS for charging and discharging does not exceed

the number of existing chargers. The DRCC in Eqgs. (3j) and (3k) impose driver’s cost/revenue threshold

limitations for selecting an alternative route instead of the shortest route during V2G and G2V operation.

The driver’s route preferences for charging/discharging EV e at time ¢ in an alternative CS other than the

nearest CS are ensured by Egs. (31) and (3m). The zero power of charging and discharging at a VCS must

be set to zero, which is achieved by Egs. (3n) and (30). Equation (3p) sets the driving route allocated to

VCS for the mandatory trip, which is equal to the shortest route to reach the destination directly from the

origin of EV e. The driving route distance between EV and VCS in the first and second optional trips are

set to zero by Egs. (3q) and (3r).
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3.2. Joint DRCC Model in the CS Layer

The DRCC model in the CS layer is presented in this section as a maximization of the net revenue of
all CSs. The sum of the CSs’ revenue is the objective function of the DRCC problem in the CS layer, as in
Eq. (4). The revenue of CS i is obtained by selling electricity to EV e and the aggregator during G2V and
V2G operation, respectively. The cost of CS ¢ consists of the operational cost of CGU, the cost of electricity

purchased from retailer » and EV e in G2V and V2G services, respectively.
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(4a)

(4b)

(4))

(4k)

There exists a set of DRCCs as in Egs. (4b), (4d), (4e) in this layer. The probability of maintaining the
(E°%)
is imposed by Eq. (4b). The lower and upper capacity limits of CGU are enforced by Eq. (4c). The DRCC
to fulfil the lower and upper capacity limits of PV generation at CS 4 is given in Eq. (4d). Equation (4e)

represents the temporal correlation of renewable energy production. For this constraint, the uncertainty

(5)



In order to consider the effect of temporal correlation on Eq. (4e), a covariance matrix is defined as [29]:

PV PV
EPV _ Et % T(t t-1),4 (6)
ti T[NPy pv |
T(t t—1),i Et 1,4

The electricity purchased from retailer r is constrained by Eq. (4f). Equation (4g) guarantees that only
one retailer is selected by CS i at time ¢. The limitation of charging and discharging power of ESS at CS i
are enforced by Egs. (4h) and (4i). The SOC of ESS must be within a permissible range, which is enforced
by Eq. (4j). Equation (4k) ensures that the electricity prices in V2G services are limited by its minimum
and maximum bounds for the DRCC problem in the CS layer.

3.3. DRCC Model in the Retailer Layer

The DRCC model in the Retailer layer is presented in this section as a maximization of the net revenue of
all retailers. It consists of the difference between revenue obtained by selling electricity to CS ¢, and the cost
of electricity purchased from the wholesale electricity market, as given in Eq. (7). The wholesale electricity
prices are the stochastic parameter in this layer.
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Omt=0+A0,, VmeB,VteT, (7g)

AV, <AV <AV, VmeB, (7h)

P <Punt<Pmn YmmneB,VteT, (71)

Qo S Qmont < Qmn YmneBVteT, (75)

At Play x P =1k <l <@ x M -1k (7k)

>1 - €,
Equations (7b) and (7c¢) enforce the active and reactive power balance at time ¢, respectively. Thus, the

electricity purchased from the wholesale electricity market through retailer » must be equal to sum of the
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electricity purchased by CSs from retailer r for active and reactive power at time t. Equations (7d) and
(7e) satisfy real and reactive power flows in the network considering voltage magnitude and angle deviations
determined by Egs. (7f) and (7g). Equation (7h) fulfils the minimum and maximum nodal voltage limits.
Equations (7i) and (7j) guarantee that active and reactive power is maintained within a standard range. The
probability of maintaining the electricity prices offered by retailers between maximum and minimum bounds

=re

under the worst distribution ambiguity set in the Retailer layer (E7¢) is imposed by Eq. (7k).

4. Simulation Results

We implemented the proposed day-ahead DRCC scheduling framework in a simulation study with three
retailers, nine CSs, and 600 EVs in a small area of San Francisco, USA, using the IEEE 37-node distribution
test system to assess its performance under different conditions. 30 bidirectional 50 kW DC chargers are
assumed to be available at each CS. Every CS is equipped with a 65 kW CGU, a PV system (randomly
selected from {16,19.2,24,27.2,32} kW set) and a one-hour ESS (randomly selected from {45, 50,65, 70,85}
kW set). The mean value of the initial SOC of EVs is assumed to be between 10% and 95%, and the
covariance of the initial SOC of each EV is equal to 5%. It is assumed that EV drivers are daily commuters
who leave for work in the morning (first mandatory trip) and return home in the evening (second mandatory
trip). Between two mandatory trips (for example, during lunchtime), EV drivers have a chance for a V2G
or G2V trip (an optional trip), so they can declare it in their daily plan submitted to the scheduling entity.
This paper assumes that each EV can have a maximum of two optional trips between mandatory trips. As
shown in Fig. 3, the first mandatory trip of 88.3% of EVs is randomly scheduled between 06:00 to 10:00. The
first optional trip of 93.5% of EVs is randomly planned between 11:00 to 15:00. The second optional trip of
88.8% of EVs is assumed to occur between 13:00 to 18:00. Finally, the second mandatory trip of 89.7% of
EVs is supposed to take place between 16:00 to 20:00. Before solving the scheduling problem, the shortest
driving routes between the origin of EV e, the location of CS 4, and the destination of EV e for each trip are
determined by using ArcGIS®. For each hour, the longitude and latitude of each CS, origin and destination
of each EV for each trip in a part of San Francisco are used in ArcGIS® to determine the shortest route.
Then, the driving distance regarding the routes is used to determine the required energy to travel on each
route.

The ambiguity sets for PV generation and wholesale electricity prices are constructed from historical
data. We calculated the mean value of PV generation (Y’f;v) as well as the covariance matrix of PV
generation (& ; and Z“) in each hour from 100 days data that was obtained from Renewables.ninja for the
same area in San Francisco [34]. In addition, for calculating the mean value (5;*™) and covariance () of the
wholesale electricity prices, 100 days’ worth of prices are used from California ISO [35]. To obtain the prices
offered to CSs by the retailers, the day-ahead electricity prices of the wholesale market are multiplied by

4.5 homogeneously to add network maintenance costs, ancillary services costs, taxes etc. The profit margin

of the retailers (o and @) is assumed to be between 5% to 50% in the G2V operation, while the CSs seek
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profit in the range of 10% to 30% of the true energy prices. Furthermore, electricity prices offered by CSs
are between 60% to 85% less than the prices offered by the retailers during V2G services. The electricity
prices sold to the aggregator by CSs are 10% more than what CSs offered to EV drivers for V2G service.
The DRCC problems are solved using the Gurobi® solver in Python on a laptop with an Intel Core i7 CPU
with a 1.80 GHz processor and 8 GB of RAM.

§~ Is*Mandatory | 4 |3 | 2| 6 0[0]0
:; 2d Mandatory| 0 | 0| 0 | O 13| 6|8
é 15t Optional ololo]|o 61010
F‘% 2" Optional | 0|0 [0 |0 8100

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hour)

Figure 3: Number of EVs in different mandatory and optional trips; simulation parameters

4.1. Ewvaluation of Low- to High-Risk Cases

First, we solved the DRCC problem in different layers for different confidence levels (v = 1 —€) to
investigate the changes in the cost and profits of the stakeholders. For the low-risk (conservative) case
studies, the confidence level is high, and the constraints in Egs. (3d), (3e), (3j), and (3k) in the EV layer,
and Egs. (4b), (4d), and (4e) in the CS layer will be satisfied 95% of the time or more. In the same case
study, Eq. (7k) in the retailer layer will be considered with a probability higher than or equal to 90% because
the DRCC model will be infeasible at 95% confidence level. It means that the retailers cannot supply CSs
under the most conservative condition of the entire ecosystem. It shows the importance of the proposed
sequential framework to capture the impact of different layers on each other.

The total net cost of EVs and the total net revenue of CSs and retailers are illustrated in Fig. 5 for
different confidence levels. By increasing the confidence level from 0.5 (high-risk case study) to 0.95 (low-
risk case study), the total net cost of EVs increased from $231 to $803 while the total net revenue of CSs
and retailers decreased from $678 and $852 to $498 and $762, respectively. The reason is that at the lower
confidence levels, constraints are relaxed for all stakeholders; hence more options to choose the most optimal
V2G and G2V operation. As a result, the risk of not meeting the day-ahead commitment for all stakeholders
is much higher in this case in the real-time operation. However, the feasible solution space is much smaller
for all stakeholders at higher confidence levels. This way, they pay a premium for higher confidence (lower
risks) at the time of delivery of services. Since the DRCC problems for the three layers are solved iteratively,
the impact of the conservative operation of one layer leads other players to behave more conservatively. The
optimization algorithms convergence rate is shown in Figure 4 for EV and CS layers at 0.95 confidence level,
and the retailer layer at 0.9 confidence level. The optimal results are obtained after 23 iterations of the outer

loop. Also, we observed that the confidence level affects the optimization runtime. The lower the confidence
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level, the higher the computation time because a larger solution space requires more plane cuts to achieve
high-quality solutions. For example, it takes 452 minutes to solve the scheduling of the entire ecosystem at

a 0.5 confidence level. In comparison, we only needed 47 minutes to solve the problem at a 0.9 confidence

level.
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Figure 4: (a) EV layer, (b) CS layer, and (c) Retailer layer objective function values at different iterations for EV and CS layers

in 0.95 confidence level and retailer layer in 0.9 confidence level.

The number of EVs scheduled for G2V and V2G operations in each trip is shown in Fig. 6 for 0.95
confidence level in the EV and CS layers and 0.9 at the retailer level. A comparison between Fig. 3 and
Fig. 6 shows that most EVs participated in V2G and G2V operation in each type of trip during higher
availability hours. For example, the first mandatory trip of 88.3% of the EVs takes place between 06:00 to
10:00, which is similar to the number of EVs that participated in V2G and G2V operation in their first trips
(Fig. 6). This is true for the second mandatory trip and the first and second optional trips.
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Figure 5: (a) Total net cost of EVs, (b) total net revenue of CSs, and (c) total net revenue of retailers for different confidence

levels from 0.5 (high-risk case) to 0.95 (low-risk case)
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Figure 6: Number of EVs scheduled for (a) G2V and (b) V2G operation

4.2. Validation of DRCC Formulation

22 23 24

In this subsection, the quality of the proposed three-layer joint DRCC framework and the solutions are

investigated. The DRCC solutions are valid while the actual confidence level (v, = 1 — €4.) is more than

or equal to the theoretical confidence level (v, =1 - €4,), which imposed on the formulation and associated

simulation of the CC programming. For this investigation, as shown in Fig. 7(a), firstly, we need to consider

a theoretical confidence level, 14y, to solve the DRCC problems at different layers iteratively based on the

mean value and covariance of stochastic parameters.

Vtn

Mean value and
covariance of
stochastic
parameters

Solve three-layer joint
DRCC problem

Generate samples of

stochastic parameters based

on normal distribution

N

p
Mean value of
stochastic

parameters

Solve three-layer
deterministic problem

g

Covariance of
stochastic
parameters

Generate samples of

stochastic parameters based
on normal distribution

Decision (° )
variables Determine how
. many times th
Daily A
oneration constraints are
P violated in each
layer
(a)
Decision
variables
Daily
operation
——
(®)

Calculate v,

Determine how many times the
constraints are violated in each layer

Figure 7: Flowchart of determining actual confidence level in (a) the DRCC problem and (b) the deterministic problem

Afterwards, the optimal solutions jointly used with the samples created for the stochastic parameters
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based on normal distribution functions, mean value and covariance of the stochastic parameters (representing
the realised value of the parameters in real-time operation) to run a daily operation of the ecosystem. Then,
the values obtained from daily operation (e.g., charging and discharging power of EV e at the charging
station ¢ at time ¢ and binary variables for the charging station ¢ for charging/discharging EV e at time ¢)
are used in the CCs (Egs. (3d), (3e), (3j), and (3k) in the EV layer, Egs. (4b), (4d), and (4e) in the CS
layer, and Eq. (7k) in the retailer layer) to investigate how many times the constraints are violated in each
layer and obtain the actual confidence level, v,.. This process is repeated for different values of theoretical
confidence level in each layer, i.e., 14y, € [0.5,0.9], to obtain the mean values of the actual confidence level,
Vge- While we used normal distribution in this part of our simulation study, it should be noted that the
reformulation of the single-sided and double-sided CCs, presented in Appendix A, is independent of the
type of probability distribution function. Also, we calculated the CCs violations in a deterministic day-ahead
scheduling framework using the process shown in Fig. 7(b) for comparison.

The actual confidence levels obtained by the proposed stochastic framework are illustrated in Fig. 8 for
each layer compared to the theoretical ones. Please note that for determining the actual confidence level of
each layer, the theoretical confidence level of other layers is kept constant at 0.9. It can be seen from the
figure that the actual confidence level is always higher than the theoretical one. In addition, Fig. 8 shows
that the DRCC programming is more conservative on the lower range of theoretical confidence levels. The
simulation results for the deterministic scheduling framework show the actual confidence levels of 0.71, 0.79,
and 0.75 for the EV, CS, and retailer layers, respectively, which are lower than the lowest actual confidence

level of the proposed stochastic framework.
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Figure 8: DRCC validation for EV, CS, and Retailer layers

In addition, the number of unique EVs that violated the CCs (Egs. (3d), (3e), (3j), and (3k)) in the
proposed DRCC framework are shown for different confidence levels in Fig. 9. As expected, the number of

unique EVs with constraint violation decreased by increasing the confidence level in the EV layer. Further-
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more, the number of unique EVs that do not reach their destination (due to lower SOC limit violation) are
shown in Fig. 10 for different confidence levels, which decreases by increasing the confidence level. It shows
the importance of the proposed framework in reducing EV drivers’ frustration, which contributes to lowering
range anxiety. In addition, 272 unique EVs could not reach their destination in the deterministic problem,

which is more than the one obtained at the lowest confidence level, 0.5, in the proposed DRCC framework.
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Figure 9: Number of unique EVs violating their CCs at least once a day at different confidence levels in the EV layer in the
proposed DRCC framework.
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Figure 10: Number of unique EVs which does not fulfil their mandatory trips in the proposed DRCC framework at different

confidence level.

4.8. Impact of Temporal Correlation of PV Generation

This section investigates the impact of considering the temporal correlation of PV generation in CSs.
First, we calculated the root mean square error (RMSE) of PV generation with and without considering the
temporal correlation in Eq. (4e) for all CSs. The simulation results show that the RMSE has improved from
17.8% to 16.3% by considering PV temporal correlations. In addition, we calculated the additional number
of unique EVs that could not fulfil their mandatory trips due to violating lower SOC limit at different
confidence levels after removing the PV correlation effect in the CS layer, shown in Fig. 11. Two more
EVs won'’t reach their destination at a 0.95 confidence level if we don’t consider the PV correlation. By

decreasing the confidence level in the CS layer from 0.95 to 0.5 in the absence of PV correlation, the number
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of additional EVs that couldn’t fulfil their mandatory trips increased to nine. It clearly shows the impact of

PV temporal correlation on the successful scheduling of the ecosystem.

S =N Wbk 0O
1

No. of unique EVs failed to
reach their destination

050 055 060 0.65 070 075 080 085 090 0.95

Theoretical confidence level

Figure 11: Additional number of unique EVs that could not reach their destination without PV correlation constraint at the

CS layer.

4.4. The Impact of Three-Layer Joint DRCC Problem

Table 1 shows a comparison between the cost/revenue of three stakeholders for two different cases as

defined below:

e Case I: This is the case in which the proposed three-layer DRCC optimisation problem is solved
iteratively to find the solution considering the mutual impacts of the stochastic behaviour of the

stakeholders in an uncertain environment. Please note that this is the proposed approach in this

paper.

e Case II: The DRCC optimisation problems in the three layers are solved individually, not iteratively.
Thus, the mutual impacts of the stochastic behaviour of the stakeholders in an uncertain environment

are not considered.

Similar mandatory and optional trips and EV drivers’ preferences are considered in both case studies.
The optimal cost of EVs at a 0.95 confidence level and optimal revenue for CS and retailer layers at 0.95
and 0.9 confidence levels, respectively, for both cases, can be observed in Table 1. The total net cost of EVs
in Case II increased by 2.6% and the total net revenue of CSs and retailers decreased by 4.0% and 1.8%,
respectively, compared to Case I. This study shows the effectiveness of the proposed iterative method by

considering the impact of uncertainty of a stakeholder on the other ones.

5. Conclusion

This paper proposes a three-layer joint DRCC model for the future e-mobility ecosystem including EVs,
CSs, and retailers to schedule V2G and G2V services in the day ahead in an uncertain environment with

unknown probability distribution functions. The interactions between the stochastic parameters of the three
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Table 1: Total net cost and revenue of all stakeholders

Cost/Revenue Case I | Case Il
Total net cost of EVs ($) 803 824
Total net revenue of CSs ($) 498 478
Total net revenue of retailers (§) | 762 748

stakeholders are considered in the proposed iterative model to improve the performance of the scheduling
system for the entire e-mobility ecosystem. Also, a second-order cone programming reformulation of the
DRCC model is implemented to reformulate the double-sided CCs. In addition, the impact of the temporal
correlation of uncertain PV generation on the CSs operation is considered. The simulation results show that
the choice of confidence level significantly affects the cost and revenue of the stakeholders as well as the
accuracy of the schedules in real-time operation. For a low-risk case study, the model estimates a 247.3%
increase in the total net cost of EVs compared to a high-risk case study, and a 26.6% and 10.6% decrease in
the total net revenue of CSs and retailers, respectively. In addition, the number of unique EVs that failed
to reach their destination has decreased from 272 in the deterministic scheduling model to 61 in the low-risk
case study. The simulation results prove the necessity of such planning frameworks to reduce the risks for
all stakeholders, which in turn facilitates higher adoption of EVs by the end-users and investors. In future
studies, we intend to explore different reformulations of DRCC in each layer that is less conservative at lower
confidence levels. Also, to make the scheduling problem more flexible for the EV drivers, a new formulation
will be developed to automatically select the best time for optional trips within a pre-defined range of time

by the EV drivers.
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Appendix A. Reformulation of single-sided and double-sided chance constraints

As mentioned before, we aim to reformulate the single-sided and double-sided chance constraints (CCs)
of EV, CS, and retailer layer based on the two Theorems developed in [33].

Theorem 1. Suppose the ambiguity set defined as = in Eq. (2) in the original manuscript, then the
equivalents of single-sided chance constraints in Egs. (A.la) and (A.1b) are as Egs. (A.2a) and (A.2b),

respectively.

IiP)Ieli]P’[a(z:)TQ +b(z) <L]>1-F¢, (A.1a)
]%)relip[a(x)TQ +b(z) >-L]>1-¢, (A.1b)

b(x) +1 /> - “Va(@)T=a(z) < L, (A.2a)
—b(z) + /%\/a(m)TEa(x) <L, (A.2b)

where a(z) and b(z) are affine mappings, and € is a random variable with zero mean and covariance matrix,
2.

Theorem 2. Suppose the ambiguity set defined as Z in Eq. (2) of the original manuscript, then the
equivalent of a double-sided chance constraint in Eq. (A.3) can be reformulated as in Eqs. (A.4) with two

additional variables (y and 7).
%niﬂ”“a(z)TQ +b(z)[<L]>1-e. (A.3)

y? +a(z)TXa(z) < e(L -)?,
[b(z)| <y +m, . (A.4)
L>7>0,y>0

Appendiz A.1. Reformulation of Chance Constraints of EV layer

According to reformulation of single-sided and double-sided chance constraints explained in Egs. (A.la)-
(A.4), the reformulation of the constraints in Eq. (3d) in the original manuscript will be as of Egs. (A.5a),
_ t
(A.5b), and (A.5¢c). For example, in Eq. (3d), welet a(z) = 17, b(z) = SOC+A; - C%77(1 “Tiei—yei)-
t=1 Fe

,and L =

Ot eie 50C.+50C 50C.-S0C . . -
=tetde (Ty o+ 11, ) - == ——===. In addition, we convert Eq. (3e) in the original

E 2 2
manuscript to Egs. (A.5d), (A.5e), and (A.5f), as well as Eq. (3j) and (3k) in the original manuscript to

(A.5g), and (A.5h), respectively.

(A.5a)
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Appendiz A.2. Reformulation of chance constraints of CS layer

(A.5b)

(A.5¢)

(A.5d)

(A.5e)

(A.5h)

Using Theorem 1, Eq. (4b) in the original manuscript is reformulated as Eq. (A.6a). Also, Egs. (4d)

and (4e) in the original manuscript are converted to Egs. (A.6b)-(A.6d) and Egs. (A.6e)-(A.6g), respectively,

based on Theorem 2.

X .
PV GU re - - ZCEE t,e,i
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—PV
‘Eﬁv - < Zgi + Higis (A.6¢)
—PV
; >0, 2,20, (A.6d)
S 7PV PV ?
Ui -175;,1 < etc,;s(z?i - Vt,i) ) (A.6e)
PV | =PV

Ytﬁv - Y(i‘{),i S AL Ui+ Vi, (A.6f)

PV PV
% 2V 20, Ui 20, (A.6g)

Appendiz A.3. Reformulation of chance constraints of retailer layer

Based on Theorem 2, the double-sided CC in Eq. (7k) in the original manuscript is reformulated as

Egs. (A.7a)-(A.7¢)

1 rey Ot — Q0 2
i+ Sz Tt S i ( : 9 L b)), (A.7a)
Pt
prs  arta
ST g L <y + 1, (A.7b)
¢
0<l, < ;Qt, o2 0. (A.Tc)
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