
SUBMITTED FOR REVIEW TO IEEE TRANSACTIONS ON INDUSTRY INFORMATICS, SEPTEMBER 2024 1

Dynamic and Memory-Efficient Shape-Based
Methodologies for User Type Identification in

Smart Grid Applications
Rui Yuan, S. Ali Pourmousavi, Senior Member, IEEE, Wen L. Soong, Fellow, IEEE, and Jon A. R. Liisberg

Abstract—Behind-the-meter (BTM) equipment identification
and monitoring their availability in real time in smart grid
applications require computationally efficient methodologies suit-
able for edge deployment. Existing shape-based approaches,
whilst maintaining interpretability advantages over structure-
based methods, suffer from computational bottlenecks and mem-
ory constraints when processing streaming data. This paper
develops three dynamic and memory-efficient updating strategies
for Similarity Profile (SP) computation: an additive method for
lossless updates, a fixed-memory approach with configurable
inertia strategies, and a codebook-based technique employing
dictionary learning for compressed data representation. The
proposed methodologies eliminate the requirement for complete
historical data reprocessing during each update, addressing crit-
ical limitations in edge computing environments. Comprehensive
simulation studies using real-world photovoltaic (PV) user data
demonstrate that the codebook-based approach achieves over
30% memory reduction while maintaining classification accuracy.
The fixed-memory technique exhibits superior performance for
applications requiring rapid change detection, with different
inertia strategies providing varying sensitivity levels for diverse
smart grid applications. These dynamic methodologies enable
the practical deployment of interpretable BTM identification
systems on resource-constrained edge devices whilst preserving
the pattern recognition advantages of shape-based approaches.

Index Terms—Dynamic updating, Data mining, Renewable
energy, Pattern recognition, Binary classification, Time series
mining, Data compression.

NOMENCLATURE

ĉi The number of similar days to day i.
ˆchi Vector representing distance changes due to the up-

dating process.
d̂i Average dissimilarity of day i.
CR Vector of the compressed representation of the whole

time series data with a sequence of codewords in the
codebook.

CW Vector of codewords in the codebook, indexed by k.
SP′ Changes in the vector of Similarity Profile during

updating, indexed by i.
SP Vector of a Similarity Profile.
TS Vector of metered electricity time series data by days,

indexed by day i.
S̃P Vector of a Similarity Profile of the old time series

data before updating.
i Index for daily data
k Index for codewords
TH A similarity threshold, i.e., day i and j are similar if

di,j ≤ TH.

ci,j ci,j = 1 if day i and j are similar. ci,j = 0 otherwise.
di,j Dissimilarity or distance between the time series of

day i and day j.
dmax The maximum dissimilarity or distance between all

pairs of the energy time series.
drep The dissimilarity or distance threshold to determine if

two sub-patterns are interchangeable.
l The total length of the energy time series data.
M The number of days of data stored in the fixed memory

method.
m The number of time intervals for one day’s worth of

data.
N The number of days in the whole energy time series

data.
W The number of the codewords in the Codebook-based

method.

I. INTRODUCTION

In modern power systems, residential consumers equipped
with rooftop PV systems, electric vehicles, and home batteries
(known as prosumers) have changed the requirements for
planning and operation. Traditional load patterns and volumes
have changed drastically with the integration of behind-the-
meter (BTM) generation and storage systems. In addition,
prosumers who participate in demand response (DR) programs
(such as virtual power plants) are dynamically contributing
to local or wholesale markets and actively participating in
the management of distribution grids. Consequently, it is
imperative for various smart grid stakeholders, such as ag-
gregators, retailers, distribution network operators, and market
operators, among others, to have near real-time insights into
the availability of these BTM resources.

For example, knowing how many prosumers under the
jurisdiction of a retailer company currently have operational
rooftop solar systems would improve aggregate demand esti-
mation and allow for more accurate forecasts for grid oper-
ations. Similarly, distribution network operators require real-
time insights into BTM resource availability to predict reverse
power flows and implement appropriate voltage regulation
strategies, and recently estimate dynamic import and export
limits. Virtual power plant aggregators depend on accurate
prosumer identification for optimal dispatch decisions and
demand response program management. Although some coun-
tries maintain records of rooftop solar systems, documentation
of other major BTM resources such as electric vehicles, battery

SUBMITTED FOR REVIEW TO IEEE TRANSACTIONS ON INDUSTRY INFORMATICS, SEPTEMBER 2024 2

storage systems, and heat pumps is lacking [1]. Furthermore,
the operational status of these resources could change due to
equipment failures, maintenance, or behavioural modifications
that require frequent updates. This underscores the necessity
for developing BTM detection algorithms capable of operat-
ing effectively on low-resolution data using edge computing
resources, for example existing smart meters, while preserving
user privacy and minimising communication overhead.

Current studies on behind-the-meter (BTM) equipment
identification methods can be categorised into two main as-
pects: their algorithmic approach and processing architec-
ture [2], [3], [4]. From an algorithmic perspective, existing
solutions fall further into structure-based and shape-based cat-
egories. Structure-based methods, including symbolic aggrega-
tion (SAX) and deep neural networks (DNNs), employ statis-
tical transformations or black-box modelling that sacrifice in-
terpretability for computational scalability. In contrast, shape-
based approaches such as motif discovery analyse pattern
similarity, preserving interpretability, which is a crucial feature
for energy retailers and consumers, at the expense of higher
computational complexity, particularly for extended time series
data. Recent advances in pattern similarity computation have
made shape-based methods increasingly viable for practical
deployment.

Architecturally, these methods can be implemented using
centralised or distributed processing paradigms [5]. Cen-
tralised approaches require full data aggregation at a central
server, creating privacy concerns and storage burdens. Dis-
tributed implementations, such as federated learning schemes,
address these issues by performing computations at edge
nodes, but must remain structure-based and thus inherit
their interpretability limitations. Furthermore, while distributed
methods reduce the transmission of raw data, they still require
substantial local computer power and communication band-
width to exchange model parameters. The IRMAC framework
introduced by the authors in [6] is a significant progress
in distributed, shape-based solutions by extracting local pat-
tern features and ensuring interpretability with a transparent
classification method. However, all existing methods, includ-
ing IRMAC require complete reprocessing of historical data
during each update, which is a computationally prohibitive
requirement for resource, constrained edge devices handling
continuous data streams. This lack of incremental adaptability
remains a critical bottleneck. This fundamental limitation
motivates this work.

In this paper, we present a novel framework, shown in
Fig.1, that combines the interpretability advantages of shape-
based methods with a suitable dynamic computation for edge
deployment. Within the proposed framework, three novel dy-
namic updating techniques are developed by the authors, that
operate on streaming data without full historical reprocessing:
an additive method for lossless updates, a fixed-memory
method with configurable inertia strategies, and a codebook-
based technique with dynamic distributed data storage. These
solutions are fast, scalable, interpretable, and flexible. To
validate the effectiveness of the proposed methods, we applied
them to dynamically identify rooftop PV users and assessed
their reaction to behavioural changes. Extensive simulation

results across diverse prosumer scenarios demonstrate that
these methods reduce memory and computation requirements
by 30% to 50% compared to distributed computing solutions
while maintaining equivalent accuracy. Thus, this paper estab-
lishes a new state-of-the-art for a practical, interpretable solu-
tion for BTM identification in edge computing environments.
The novelty of this work includes the following.

• Development of three dynamic updating methods (addi-
tive, fixed-memory, codebook-based) to reduce memory
and computation requirements.

• Comparison of different dropping strategies
(low/medium/high-inertia) for the fixed-memory method,
and compressing strategies for the codebook method,
enabling trade-offs between short-term awareness and
long-term stability, and privacy preservation for users
altering their BTM applications.

• Using real-world PV data and synthetic benchmarks,
demonstrating superior performance under dynamic pro-
sumer behaviour (Section V).

• Thorough performance analysis on identification accu-
racy, memory savings, and sensitivity on users’ behaviour
changes for the proposed updating methods (Section IV).

This paper is organised as follows: Section II briefly ex-
plains the definitions of time series similarity measures, pre-
vious work on shape-based patterns mining, and the problem
we are trying to solve in this paper. Section III details the
three methods proposed in this paper for dynamic updating.
The simulation studies are reported in Section IV, and the
results are analysed in detail. Section V concludes the paper
with a brief outline of prospective research directions.

II. RELATED WORK

Identification of BTM equipment has become a critical
focus in the smart grid era, where related research primar-
ily addresses two challenges: distinguishing between users
equipped with different BTM devices and tracking changes
in device status or usage patterns over time. Shape-based
solutions combine power system domain knowledge with data
mining techniques, particularly pattern recognition and feature
extraction, to uncover BTM usage features from long-term
metered data [7], [8]. The following subsections summarise
the key concepts and methodologies that underpin this work.

A. Time series similarity measures

Given an energy time series E ∈ Rl, with length l, i.e.,
el ∈ R : E = (e1, e2, · · · , el), the time series partition Em

n =
(en1

, en2
, · · · , enm

) is a sub-pattern of E with a length of m.
Given the context of residential energy usage, the length m in
this paper refers to the length of a day, and n is the index of
nth day.

When searching for sub-patterns, we need distance metric to
distinguish similar patterns from dissimilar ones. The dissimi-
larity between a pair of sub-patterns Em

i and Em
j is presented

by di,j , which can be calculated by the L1 norm, Euclidean
distance (ED) or Dynamic Time Warping (DTW), among other
distance metrics [7], [8]. Considering the characteristics of
residential electricity consumption, time shifting, and pattern

SUBMITTED FOR REVIEW TO IEEE TRANSACTIONS ON INDUSTRY INFORMATICS, SEPTEMBER 2024 3

Smart meter internal function

Historical
database

RM
Updating

SP
Updating

Metering Service
Providers

Smart Grid Service
Providers

Measurement
unit

Fig. 1: High-level block diagram of the proposed methods showing a residential microgrid with smart meter and the existing
and new functionalities

distortion due to irregular consumer behaviour, and to empha-
sise particular temporal patterns, we use annotated DTW as
our distance metric [6]. This process of retrieving sub-patterns
from long time series with distance metric is termed similarity
joins [5], with applications in motif discovery.

B. Motif discovery and Matrix Profile

Motif is defined as the closest sub-pattern pair of the time
series, minimising the distance [9]. The process of motif
discovery applies nearest-neighbour queries to retrieve the
closest neighbours of a given sub-pattern Em

i , from the long
energy time series E, i.e., R1NNq = min(d(Em

i , Em
j)) for

{Em
i , Em

j } ∈ E.
In 2016, a nearest-neighbour query based technique in [10],

known as MP, was proposed that included the calculation of
the z-normalised ED with the Fast Fourier Transform (FFT) to
significantly decrease the spatial and temporal complexity of
the motif discovery problem. MP retrieves the closest neigh-
bours for each pair of sub-patterns with nearest-neighbour
queries, and record the distance, i.e., MP[i] = R1NNi

, for
i ∈ [1, 2, 3, · · ·N].

C. Similarity profiles and refined motifs

In smart grid applications, it is commonly required to iden-
tify a single sub-pattern that is repeated the most frequently
and exhibits the minimum distance from other sub-patterns,
rather than simply identifying the nearest pair of sub-patterns.
Therefore, the authors proposed a new definition of motif,
called Refined Motif (RM), in [6]. Compared to extracting
the closest sub-patterns with nearest-neighbour queries, RM
uses range queries to calculate how many sub-patterns are
similar. Given a sub-pattern Em

n = (en1 , en2 , · · · , enm), a full
TS E, a distance measure d and a threshold ε, we can find
the set of sub-patterns R in E that are within the distance
ε from q, i.e., RRQEm

n
= {Ei ∈ E|d(Em

n , Ei) ≤ ε}. This
process is also called Similarity self-join. The RM can be
subsequently determined using the SP. This involves retrieving
range queries for each pair of sub-patterns and noting the
number of matching patterns ci for each query sub-pattern. In
addition, it requires recording the maximum global distance
dmax and the average distance for each range query d̂i. Con-
sequently, SP forms a vector that represents the incidences

of each sub-pattern throughout the entire series. It can be
presented as in Fig. 2 and Equation (1), where di,j is the
annotated DTW distance between day i and day j, ci,j is a
binary variable representing whether the two days are similar,
the total similarity indices ĉi, which are integers representing
the number of similar patterns with the current day i, and the
average annotated DTW distance d̂i normalised by max(di,j)
as the secondary impact factor for SP. It will differentiate the
days with the same similarity indices.

Fig. 2: The proposed Similarity Profile (SP) in [6]

SPi = ĉi −
d̂i

max(di,j)
. (1)

Unlike MP assuming no domain knowledge of the data,
SP takes into account domain knowledge to provide an inter-
pretable and accurate solution for the identification of BTM
appliances, as explained in [6]. As SP computation operates
at the end of users, the authors in [6] introduced a distributed
methodology named IRMAC to identify users with rooftop PV
systems and those using electric heating systems. Simulation
studies showed that IRMAC outperforms many intuitive and
complex classification methods. For additional information,
readers may consult [6].

D. Limitations in the existing approaches

Although IRMAC and other distributed approaches, such as
MP and federated learning, offer clear benefits, they encounter
a significant drawback: every update necessitates having access
to the entire historical dataset and requires reprocessing. This

SUBMITTED FOR REVIEW TO IEEE TRANSACTIONS ON INDUSTRY INFORMATICS, SEPTEMBER 2024 4

presents unresolved issues for the deployment of these meth-
ods at the edge, such as computational bottlenecks, memory
overflows, and data privacy concerns.

In order to tackle these challenges, we suggest a range of so-
lutions for streaming SP updates that remove the requirement
for complete historical data and reprocessing, while integrating
different levels of inertia-aware edge computing along with
advantages in privacy-preserving compression. These methods
are optimised to perform effectively under constrained com-
putational power, storage, and communication bandwidth, and
are validated using real-world smart meter data from rooftop
PV households.

III. THE PROPOSED DYNAMIC UPDATE METHODS

The block diagram in Fig. 1 presents the high-level architec-
ture for the proposed dynamic update framework within typical
Australian smart meter configurations. In these systems, half-
hour consumption data is collected and transmitted daily to
metering service providers, with retailers accessing the data
for billing purposes.

The proposed framework could operate within existing
smart meters or dedicated edge devices, using the availability
of the measurement unit’s daily data to trigger SP updates.
Rather than reprocessing complete historical datasets, as re-
quired by existing methods, our approach updates the end-
user’s SP through single-iteration calculations using new daily
data. This significantly reduces memory and computational
demands, decreases the risk of privacy breaching of full
historical data, while enabling real-time RM extraction and
communication to smart grid service providers, as shown in
Fig. 1.

This paper develops three novel dynamic updating method-
ologies within the proposed framework specifically designed
for edge-based SP computation: the additive method pro-
vides lossless updates with increasing memory requirements;
the fixed-memory method maintains constant memory allo-
cation through configurable data retention strategies; and the
codebook-based method employs dictionary learning for com-
pressed data representation with dynamic memory allocation.
These methods address different operational requirements and
resource constraints, making them suitable for various smart
grid applications.

The additive method ensures complete accuracy by preserv-
ing all historical information, although memory consumption
increases linearly with time. The fixed-memory method offers
three inertia strategies—low, medium, and high—that provide
varying levels of sensitivity to detect behavioural changes
while maintaining fixed computational complexity and mem-
ory requirement. The codebook-based method achieves opti-
mal long-term performance by balancing accuracy with mem-
ory efficiency through adaptive compression techniques, as
demonstrated in simulation studies.

The detailed implementation, performance characteristics,
and application scenarios of each method are presented in the
following subsections.

A. RM update with Additive method

Using January as an example, the additive method provides
a baseline approach for dynamic SP, represented schematically
in Fig. 3. The daily profile for each day requires a fixed
memory allocation of 1X bytes, where X is the memory
requirement for the demand profile for one day. The required
memory grows daily.

1
Jan
1

Jan
2

Jan
2

Jan
3

Jan
3

Jan
4

Jan
4

Jan
5

Jan
5

Jan
6

Jan
6

Jan
7

Jan
7

Jan
8

Jan
8

Jan
...... 31

Jan
31
JanDay 1 1

Jan
2

Jan
3

Jan
4

Jan
5

Jan
6

Jan
7

Jan
8

Jan
... 31

JanDay 1

1
Jan
1

Jan
2

Jan
2

Jan
3

Jan
3

Jan
4

Jan
4

Jan
5

Jan
5

Jan
6

Jan
6

Jan
7

Jan
7

Jan
8

Jan
8

Jan
...... 31

Jan
31
Jan

Day 2 1
Jan

2
Jan

3
Jan

4
Jan

5
Jan

6
Jan

7
Jan

8
Jan

... 31
Jan

Day 2

1
Jan
1

Jan
2

Jan
2

Jan
3

Jan
3

Jan
4

Jan
4

Jan
5

Jan
5

Jan
6

Jan
6

Jan
7

Jan
7

Jan
8

Jan
8

Jan
...... 31

Jan
31
Jan

Day 3 1
Jan

2
Jan

3
Jan

4
Jan

5
Jan

6
Jan

7
Jan

8
Jan

... 31
Jan

Day 3

1
Jan
1

Jan
2

Jan
2

Jan
3

Jan
3

Jan
4

Jan
4

Jan
5

Jan
5

Jan
6

Jan
6

Jan
7

Jan
7

Jan
8

Jan
8

Jan
...... 31

Jan
31
Jan

Day 4 1
Jan

2
Jan

3
Jan

4
Jan

5
Jan

6
Jan

7
Jan

8
Jan

... 31
Jan

Day 4

… …

Memory: 1X

Memory: 2X

Memory: 3X

Memory: 4X

Cloud/data warehouse Historical
data

SP & RM
Calculation

Engine
Calculation

Engine

Fig. 3: A block diagram showing the operation of the additive
method and its memory requirements

The incoming data is compared with all existing historical
patterns to update

−→
SP with changes

−→
SP′. Therefore, the updated

time series contains all the daily data from day 1 to the day
before. After updating, the new time series and SP will be
stored at the user’s end, where the RM can be updated from
the new SP, as shown in Fig. 2. It can be seen in the figure
that the memory requirement will grow constantly over time.
Equations (2-5) present the additive updating process from day
N to day N + 1 in three steps. In the first step, the global
maximum dissimilarity dmax is calculated with the distance
between day N + 1 and days 1 to N . Second, changes in
SP, that is, SP′

i, are calculated based on the global maximum
dissimilarity, and the counters are updated by the dissimilarity.
Third, SP is calculated by updating the old SP value, S̃Pi, with
the new incoming value, SPN+1 as in Equations (4-5). The
procedure takes one iteration to update the RM with linear
complexity.

max(di,j) = max(d̃max, di,N+1), 1 ≤ i ≤ N, (2)

SP′
i = ci,N+1 −

di,N+1 · d̃max

max(di,j)
+

(⌈S̃Pi⌉ − S̃Pi) · (N − 1)

N
,

1 ≤ i ≤ N, (3)

SP[1:N] = SP′
[1:N] + S̃P[1:N], (4)

SPN+1 =

N∑
i=1

ci,N+1 −
∑N

i=1 di,N+1

max(di,j) ·N
. (5)

Algorithm 1 shows a step-by-step computation process. For
a time series with length l and window size m, which grows
daily, recomputing the SP takes O(l2m) time complexity, as
discussed in [6]. On the other hand, updating an incoming

SUBMITTED FOR REVIEW TO IEEE TRANSACTIONS ON INDUSTRY INFORMATICS, SEPTEMBER 2024 5

day’s data at the user’s end with the additive method on the
same data length takes the time complexity of O(lm).

Algorithm 1 Additive Method for Updating SP

Require: TS contains N days data TS[1:N] with a new incom-
ing data TSN+1 to be updated, SP with N days’ record
SP[1:N], a maximum dis-similarity dmax, and a threshold
TH
c[1:N] ← [0, 0, . . . 0] ▷ initialise counters
ch[1:N] ← [0, 0, . . . 0] ▷ initialise changes of distances
d̂N+1 ← 0 ▷ initialise dissimilarity for new data
for i = 1, 2 . . . N do

di,N+1 ← DTW (TSN+1,TSi)
d̂N+1 ← d̂N+1 + di,N+1

d′max ← max(dmax, di,N+1) ▷ update max distance
chi ← di,N+1

if di,N+1 ≤ TH then ▷ check threshold
ci ← ci + 1
cN+1 ← cN+1 + 1

end if
end for
avgscaled ← ⌈SP[1:N]⌉ − SP[1:N]

avg′ ← avgscaled·(N−1)·dmax+ch[1:N]

d′
max·N

− avgscaled
SP[1:N] ← SP[1:N] + c[1:N] − avg′ ▷ Equation (3-4)
SPN+1 ← cN+1 − dnew·(N+1)

d′
max·N

▷ Equation (5)
return SP, TS, d′max ▷ RM is TSi where
SPi == max(SP)

The main bottleneck of the additive method is that memory
and computational time requirements increase with the number
of days, as shown in Fig. 3. In addition, the additive method
provides a global RM because of using the entire historical
data. Therefore, it can be as accurate as the method proposed
in [6]. However, this method is less sensitive to identifying
the user’s type switching, i.e., a non-PV user switching to a
PV user or vice versa. To address these issues, we propose a
modified updating approach in the next subsection.

B. RM update with Fixed-memory method
The fixed-memory method addresses the unbounded mem-

ory growth of the additive approach by maintaining a sliding
window of the new incoming sub-pattern as shown in Fig. 4.
New daily data replaces data from a selected past day in the
memory, thereby maintaining a consistent memory allocation
size, denoted M . Compared to the additive method, the time
complexity of the fixed-memory method is O(M ·m), which
is l/M times the complexity of the Additive method since l
is normally much larger than M . Algorithm 2 illustrates the
sequential procedure of the fixed-memory method.

Algorithm 2 Fixed-memory method

Require: variable TS contains M stored daily sub-patterns
TS[1:M] with an incoming day’s data TSM+1 to update,
variable SP with M days’ similarity information SP[1:M],
a maximum dis-similarity dmax, and a threshold TH
TSin ← TSM+1 ▷ new incoming data

1
Jan

2
Jan

3
Jan

4
Jan

5
Jan

6
Jan

7
Jan

8
Jan

... 31
JanDay 5

1
Jan

2
Jan

3
Jan

4
Jan

5
Jan

6
Jan

7
Jan

8
Jan

... 31
JanDay 6

1
Jan

2
Jan

3
Jan

4
Jan

5
Jan

6
Jan

7
Jan

8
Jan

... 31
JanDay 7

1
Jan

2
Jan

3
Jan

4
Jan

5
Jan

6
Jan

7
Jan

8
Jan

... 31
JanDay 8

… …

Memory: 5X

Memory: 5X

Memory: 5X

Memory: 5X

Cloud/data warehouse Historical
data

SP & RM
Calculation

Engine

Fig. 4: A block diagram representing the operation of the fixed-
memory method and its memory requirement

TSout ← TSindex ▷ drop data by index
Remove TSindex from TS
c[1:M] ← [0, 0, . . . 0] ▷ initialise counters
ch[1:M] ← [0, 0, . . . 0] ▷ initialise changes of distances
dnew ← 0 ▷ initialise dissimilarity for new data
for i = 1, 2, 3 . . .M-1 do

dout ← DTW(TSout,TS[i])
din ← DTW(TSin,TS[i])
dnew ← dnew + din
d′max ← max(dmax, din) ▷ update distance
chi ← din − dout
chi ← chi

M ▷ changes in average
if dout ≤ TH then ▷ check threshold

c[i] ← c[i] − 1
end if
if din ≤ TH then ▷ check threshold

ci ← ci + 1
cM ← cM+1 + 1

end if
end for
avgscaled ← ⌈SP[1:M−1]⌉ − SP[1:M−1]

avg′ ← avgscaled·dmax+ch[1:M−1]
d′
max

− avgscaled
SP[1:M−1] ← SP[1:M−1] + c[1:M−1] − avg′

SPM ← cM − dnew

d′
max

return SP, TS, d′max▷ RM is TSi where SPi = max(SP)

This method is a lossy solution in terms of preserving the
actual SP values due to the method tracking the maximum
distance within the memory as opposed to the global maximum
distance, i.e., max(di,j) in Equation (2). The extracted RM is
expected to be accurate because the decimal relationship in
the SP is preserved, with its decimal part scaled at the same
level in Equation (5). There are two hyperparameters in the
fixed-memory method, i.e., sub-pattern dropping strategy and
the window size, that are discussed next.

1) Different dropping strategies: The performance of the
fixed-memory method is critically dependent on the strategy
to select TSout. Three dropping strategies are evaluated, which

SUBMITTED FOR REVIEW TO IEEE TRANSACTIONS ON INDUSTRY INFORMATICS, SEPTEMBER 2024 6

could be used in different smart grid applications as follows:
1) Low-inertia strategy: In this approach, we remove the

oldest day profile from memory to save the incoming
daily data. In this way, we can access the latest M days
of consumer demand profiles. As a result, this strategy
is heavily influenced by the most recent historical data
and the temporal dynamics of it will play the main role
in finding RM. In other words, it offers rapid detection
of behaviour changes, but potentially discards valuable
historical patterns.

2) High-inertia strategy: As daily time series and SP are
maintained and do not have to be sequential, we suggest
implementing a “high-inertia strategy” that eliminates
data with minimal SP value to maintain long-term mem-
ory. This strategy will preserve similar patterns in the
memory. Therefore, it preserves dominant motifs at the
cost of reduced sensitivity to subtle changes.

3) Medium-inertia strategy: Taking into account the issues
of the previous reduction strategies, we propose the
third strategy in which we eliminate daily data with the
median SP value. The idea is to keep the most similar
and dissimilar patterns in the database. In this way, the
medium-inertia strategy maintains diversity in the stored
patterns while filtering outliers.

To better explain the three strategies, consider an example in
which a consumer’s PV solar system malfunctions, resulting
in a temporary shift from a solar user to a non-solar user,
as shown in Fig. 5. The yellow and light-blue areas in the
figure represent the periods before and after the breakdown
of the solar system. It can be seen that it takes three and
four updates for the low-inertia and medium-inertia strategies,
respectively, to identify the breakdown (shown by the vertical
line). However, the high-inertia strategy cannot detect this
change even after four updates. Therefore, it can be concluded
that the low-inertia strategy method is good at tracking even
the smallest changes in user behaviour. In contrast, the high-
inertia strategy works best for users with stable behaviour. A
comprehensive simulation study on the capabilities of the three
methods is presented in Section IV.

2) Hyperparameter justification for memory size: The per-
formance of the fixed-memory method depends critically on
the parameter M , which determines how many daily sub-
patterns are preserved in memory. Although larger M retains
more historical patterns at increased memory and computation
costs, smaller values improve efficiency but risk losing impor-
tant temporal features. This trade-off is particularly relevant for
edge devices with limited computational resources and storage.
To guide practitioners in selecting M , Section IV provides a
systematic analysis that examines: (1) accuracy vs. memory
trade-off for different values of M ; (2) identification of the
knee point where accuracy gains diminish; and (3) practical
recommendations based on application requirements.

C. RM update with Codebook-based method

The codebook-based method provides an adaptive solution
for dynamic RM updates by employing dictionary learning
techniques to achieve memory efficiency while preserving

pattern fidelity [11], [5]. This method is especially appropriate
for long-duration applications where memory limitations are
significant, but it is necessary to preserve full historical data
in a compressed format. The method maintains two key
data structures, namely Codeword and representations. The
codeword is a sub-pattern cwi in the time series representing
a set of other similar sub-pattern neighbours whose distance
is smaller than a replaceable distance threshold drep, that
is, {Ei ∈ E|d(cwi, Ei) ≤ drep}. Representation cri is the
pointer that maps the compressed time series partition i to the
codeword cws of the codebook, that is, Ei

′ = D · cri = cws.
We adopt the same idea for the real-time updating problem
of RM discovery, as shown in the block diagram of Fig. 6.
Since the dissimilarity of the daily patterns in our proposed
dynamic RM is measured independently, the RM discovery
process does not require the sub-patterns to be in a temporal
sequence. Consequently, we propose two sub-strategies for
the codebook method, which are discussed in the following
subsections.

1) Codebook method with compressed representation: The
first strategy is the conventional codebook method. In this
method, the codebook and the historical SP are stored at
the user’s end. The distance between the new incoming data
and the existing codewords in the codebook is computed. If
the distance of the new incoming data and the most similar
codeword is smaller than a pre-defined threshold, it will be
replaced with an existing codeword. Otherwise, it will be
added to the codebook as a new codeword. In general, this
method will compress the end-user’s data with a codebook
and recover the data with compressed representation before
the updating process. The pseudocode for this approach is
presented in Algorithm 3.

Algorithm 3 Codebook with compressed representation

Require: variable CW contains W stored codewords
CW[1:W] with a incoming TSin to update, variable SP with
N days’ similarity SP[1:N], a compressed representation
with N day’s code number CR[1:N+1], a maximum dis-
similarity dmax, and a distance value which is seen as
replaceable drep
c[1:N] ← [0, 0, . . . 0] ▷ initialise counters
ch[1:N] ← [0, 0, . . . 0] ▷ initialise changes of distances
dnew ← 0 ▷ initialise dissimilarity for the new data
dmin ← drep
TS[1:N] ← CWCR[1:N]

▷ recover TS
CRN+1 ←W + 1 ▷ initialise codebook
for i = 1, 2, 3 . . . N do

din ← DTW (TSin,TSi)
dnew ← dnew + din
d′max ← max(dmax, din) ▷ update d
ch[i] ← din
if din ≤ TH then ▷ check threshold

ci ← ci + 1
cN+1 ← cN+1 + 1

end if
if din ≤ dmin then ▷ check if replaceable

dmin ← din
CRN+1 ← CRi

SUBMITTED FOR REVIEW TO IEEE TRANSACTIONS ON INDUSTRY INFORMATICS, SEPTEMBER 2024 7

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

Dec 27
2012

Dec 28 Dec 29 Dec 30 Dec 31 Jan 1
2013

Jan 2 Jan 3 Jan 4
0

0.5

1

1.5

2

Dec 27
2012

Dec 28 Dec 29 Dec 30 Dec 31 Jan 1
2013

Jan 2 Jan 3 Jan 4
0

0.5

1

1.5

2

Dec 27
2012

Dec 28 Dec 29 Dec 30 Dec 31 Jan 1
2013

Jan 2 Jan 3 Jan 4
0

0.5

1

1.5

2

Time

Im
po

rt
ed

 E
le

ct
ri

ci
ty

, k
W

RM RM RM

RM RM RM

RM RM RM

RM RM RM

RM RM RM

Dec 27
2012

Dec 28 Dec 29 Dec 30 Dec 31 Jan 1
2013

Jan 2 Jan 3 Jan 4
0

0.5

1

1.5

2

Low-intertia strategy

Time

Im
po

rt
ed

 E
le

ct
ri

ci
ty

, k
W

RM RM RM

RM RM RM

RM RM RM

RM RM RM

RM RM RM

Medium-intertia strategy High-intertia strategy

Fig. 5: Comparison of three variations of the fixed-memory method in detecting solar type switching, window size = 5

1
Jan
1

Jan
2

Jan
2

Jan
3

Jan
3

Jan
4

Jan
4

Jan
5

Jan
5

Jan
6

Jan
6

Jan
7

Jan
7

Jan
8

Jan
8

Jan
...... 31

Jan
31
Jan

Day 3 1
Jan

2
Jan

3
Jan

4
Jan

5
Jan

6
Jan

7
Jan

8
Jan

... 31
Jan

Day 3

1
Jan
1

Jan
2

Jan
2

Jan
3

Jan
3

Jan
1

Jan
1

Jan
5

Jan
5

Jan
6

Jan
6

Jan
7

Jan
7

Jan
8

Jan
8

Jan
...... 31

Jan
31
Jan

Day 4 1
Jan

2
Jan

3
Jan

1
Jan

5
Jan

6
Jan

7
Jan

8
Jan

... 31
Jan

Day 4

1
Jan
1

Jan
2

Jan
2

Jan
3

Jan
3

Jan
1

Jan
1

Jan
2

Jan
2

Jan
6

Jan
6

Jan
7

Jan
7

Jan
8

Jan
8

Jan
...... 31

Jan
31
Jan

Day 5 1
Jan

2
Jan

3
Jan

1
Jan

2
Jan

6
Jan

7
Jan

8
Jan

... 31
Jan

Day 5

1
Jan
1

Jan
2

Jan
2

Jan
3

Jan
3

Jan
1

Jan
1

Jan
2

Jan
2

Jan
6

Jan
6

Jan
7

Jan
7

Jan
8

Jan
8

Jan
...... 31

Jan
31
Jan

Day 6 1
Jan

2
Jan

3
Jan

1
Jan

2
Jan

6
Jan

7
Jan

8
Jan

... 31
Jan

Day 6

… …
Memory: 3X

Memory: 3X

Memory: 3X

Memory: 4X

Cloud/data warehouse CodebookSP & RM
Calculation

Engine
Calculation

Engine

Compressed
Representation Codebook

1
Jan
1

Jan
2

Jan
2

Jan
3

Jan
3

Jan

1
Jan
1

Jan
2

Jan
2

Jan
3

Jan
3

Jan

1
Jan
1

Jan
2

Jan
2

Jan
3

Jan
3

Jan

1
Jan
1

Jan
2

Jan
2

Jan
3

Jan
3

Jan
6

Jan
6

Jan

Fig. 6: A bock diagram illustrating the Codebook method for
dynamic RM discovery

end if
end for
avgscaled ← ⌈SP[1:N]⌉ − SP[1:N]

avg′ ← avgscaled·(N−1)·dmax+ch[1:N]
d′
max·N

− avgscaled
SP[1:N] ← SP[1:N] + c[1:N] − avg′

SPN+1 ← cN+1 − dnew

d′
max

if CBN+1 == W + 1 then

CRW+1 ← TSin

end if
return SP, CW, d′max, CR ▷ RM is CWCRi

where
SPi == max(SP)

2) Codebook without compressed representation: In con-
trast to the earlier codebook approach, we introduce a novel
method that presumes reconstructing the original time series
from codewords is not required. Instead, an alternative code-
book known as the Patterns Dictionary (PD) is stored at the
end-user’s location. PD is proposed to store the codewords
as keys and the occurrences as values. The end user can
maintain and revise the complete SP based on codewords
and occurrences, though it lacks a temporal aspect since the
SP’s index values do not indicate collection times. Compared
to the Codebook model with compressed representation, this
strategy preserves the relationship of each sub-pattern but
in an anonymous way because the temporal sequences are
not included. More specifically, the SP’s sub-pattern with a
higher index does not necessarily refer to newer data than the
sub-pattern with a lower index. Furthermore, it requires less
memory since we do not need a compressed representation.
The implementation of this strategy is explained step by step
in Algorithm 4.

SUBMITTED FOR REVIEW TO IEEE TRANSACTIONS ON INDUSTRY INFORMATICS, SEPTEMBER 2024 8

Algorithm 4 Codebook method without compressed represen-
tation

Require: a dictionary with W stored daily patterns as keys
and occurrences as values, i.e. PD = {CR1 : n1, ...CRW :
nW }, an incoming TSin to update, variable SP with N
days SP[1:N], a maximum dis-similarity dmax, and a value
of distance which can be seen as pre-defined drep
c[1:N+1] ← [0, 0, . . . 0] ▷ initialise counters
ch[1:N] ← [0, 0, . . . 0] ▷ initialise changes of distances
dnew ← 0 ▷ initialise dissimilarity for new data
dmin ← drep
p←W + 1 ▷ initialise the position for new data in PD
cr ← 1 ▷ track the position in SP
for i = 1, 2, 3 . . .W do

din ← DTW (TSin,CRi)
ni ← PDCRi

▷ occurrence of the data
dnew ← dnew + din · ni

d′max ← max(dmax, din) ▷ update d
ch[cr:cr+ni] ← din
if din ≤ TH then ▷ check threshold

c[cr:cr+ni] ← c[cr:cr+ni] + 1
cN+1 ← cN+1 + 1

end if
if din ≤ dmin then ▷ check if replaceable

dmin ← din
p← i

end if
cr ← cr + ni ▷ update the position

end for
avgscaled ← ⌈SP[1:N]⌉ − SP[1:N]

avg′ ← avgscaled·(N−1)·dmax+ch[1:N]
d′
max·N

− avgscaled
SP[1:N] ← SP[1:N] + c[1:N] − avg′

SPin ← c[N+1] − dnew

d′
max

▷ new data’s SP
if p ≤W + 1 then

np ← np + 1
cr ← n1 + n2 + . . . np ▷ find the position to insert

new SP
SP[cr+1:N+1] ← SP[cr:N] ▷ shift one place for new

data
SP[cr] ← SPin ▷ insert new SP

else
CRW+1 ← TSin

nW+1 ← 1
SPN+1 ← SPin

end if
return SP, PD = {CR1 : n1, ...}, d′max ▷ RM is CRi

where SP[n1+..ni] == max(SP)

IV. SIMULATION STUDIES

To assess the performance of our proposed methods, the
Solar Home data from New South Wales, Australia, is used
for the simulation studies, which contains half-hourly PV gen-
eration and demand data from 300 residential consumers, span-
ning three continuous years from 2010–11 to 2012–13 [12].
Our evaluation focuses on three key aspects: (1) PV user iden-
tification accuracy, (2) computational efficiency, and (3) mem-

ory requirements. Since both the fixed-memory and codebook-
based methods have different sub-strategies, see Sections III-B
and III-C, we report and discuss the results of the fixed-
memory and codebook models individually to better show
their advantages and limitations. Finally, the overall accuracy
of all the proposed methods is compared in Section IV-C for
different data lengths.

A. Fixed-memory method: evaluation on dropping strategies
and memory sizes

In order to thoroughly assess the fixed-memory approaches,
a comprehensive simulation study was carried out where users
transitioned between being solar and non-solar users. We
selected 100 random users with rooftop solar systems from the
dataset, assuming their systems would fail on day 10, making
them non-solar users afterward. Also, another dataset with 100
non-solar users was created, where they acquired solar systems
on day 10, resulting in their conversion to solar users for the
remaining duration of the study. The frequency of daily RM
updates was tracked to observe the performance of different
methods to detect user transitions. Fig. 7 and Fig. 8 illustrate
the results for solar users becoming non-solar users and vice
versa.

7%

%
 u

nt
ra

ck
ed

High-inertia

Medium-inertia

Low-inertia

0 20 40 60
Steps to track the transition

C
ou

nt

0%

36%

Fig. 7: Inertia study for 100 non-solar users becoming solar
users: median number of iterations to detect the change is 3,
4 and 11 for low-, medium-, and high-inertia strategies

0%

32%

57%

High-inertia

Medium-inertia

Low-inertia

0 20 40 60
Steps to track the transition

C
ou

nt

%
 u

nt
ra

ck
ed

Fig. 8: Inertia study for 100 solar users becoming non-solar
users: median number of iterations to detect the change is 3,
7 and 80 for low-, medium-, and high-inertia strategies

SUBMITTED FOR REVIEW TO IEEE TRANSACTIONS ON INDUSTRY INFORMATICS, SEPTEMBER 2024 9

The simulations reveal distinct performance characteristics
across the three inertia strategies in tracking user-type tran-
sitions. The low-inertia strategy shows remarkable respon-
siveness, achieving 100% detection of transitions between
solar and non-solar states. Conversely, the high-inertia strategy
effectively retains patterns but poorly detects changes, missing
36% of non-solar-to-solar and 57% of solar-to-non-solar tran-
sitions. The medium-inertia strategy strikes a balance, detect-
ing over 50% of transitions within 30 days while maintaining
reasonable long-term stability. The differences in performance
are attributed to core design variations: the sliding window
method of low-inertia favours recent information, the feature-
preserving strategy of high-inertia emphasises on detecting
stable patterns, and the selective retention in medium-inertia
ensures the maintenance of diversity. Notably, all strategies
perform better at detecting non-solar-to-solar transitions (7-
32% unidentified) versus solar-to-non-solar (36-57% uniden-
tified), as solar patterns exhibit more distinctive SP signatures
that are easier to preserve in memory-limited scenarios.

We also ran another simulation study with different memory
sizes to assess its impact on the performance of the fixed-
memory approaches, i.e., identifying solar users from non-
solar users. The results are shown in Fig. 9. The low-inertia
strategy shows strong memory dependence, with accuracy
improving from 82% to 91% as memory expands from 5 to
30 days. The high-inertia strategy achieves the highest average
accuracy (94%), demonstrating stable long-term feature ex-
traction. Medium-inertia achieves peak accuracy with 10 days
of memory size, validating its balanced design on tracking
transitions and preserving featured patterns.

5 7 10 15 30
80
82
84
86
88
90
92
94
96

Low-inertia
Medium-inertia
High-inertia

Memory Size (days)

A
cc

ur
ac

y
(%

)

93.3%93.3%
94.7%

92.7%
94.7%

Star markers indicate highest accuracy at each memory size

Fig. 9: Performance of the three dropping strategies

B. Codebook: Compression rate and accuracy

The compression performance is quantified by memory
saving, which is the ratio between saved memory versus total
memory. A sensitivity analysis is conducted for 300 consumers
with 1, 2 and 3 months of data from summer. The results are
summarised in Table I. It can be seen that the memory saving
rate increases when more data is included. In other words,
adding more data may lead to more stable codewords.

One hyperparameter in the codebook-based method is the
threshold to determine if one sub-pattern can be replaced with
the codeword. A lower threshold results in more codewords
in the codebook or PD; hence, less memory saving. On the
other hand, the distance between replaced sub-patterns and

the codewords will be smaller. As a result, there is a trade-
off between memory saving and accuracy. In particular, the
compression performance for each user is different because
of the variability in their patterns. To measure the trade-off
between accuracy and compression, we performed a simula-
tion study in which the threshold is changed from 0.5 to 2 to
compute the memory saving for the 300 users. In addition, we
measured the performance of the extracted RMs by identifying
solar users with a linear classifier developed in our previous
work [6]. Fig. 10 illustrates the memory saving distributions
for end-users with varying classification accuracy.

0

20

40

60

25.0% 50.0% 75.0%
Space saving

C
ou

nt

 accuracy:88% accuracy:93% accuracy:96%

Fig. 10: Trade-off between memory saving and accuracy in the
codebook-based method for 299 solar users and 299 non-solar
users

In general, as illustrated in Fig. 10, memory saving exhibits
considerable variability between users. At 96% accuracy, 87
users barely show any memory saving. However, most user
data can be compressed to a certain degree, with an average
memory reduction of 30%. As accuracy declines, the distribu-
tion shifts toward greater memory savings. At 88% accuracy
on the classification problem, most users achieve more than
50% memory saving.

Fig. 11 presents the Pareto front derived from additional
experiments on the trade-off between average memory savings
and accuracy, using data collected over a 3-month period for
598 users. The fixed-memory method with the three elimina-
tion strategies is also included for performance comparison.

From Fig. 11, it is apparent that the codebook method
without using compressed representation managed to achieve
an average of 30% memory savings without compromising
accuracy. At compression levels exceeding 50% memory sav-
ings, the fixed-memory method’s high- and medium-inertia
strategies perform substantially better. In contrast, as indicated

TABLE I: Compression ratio of the codebook method

Month
Memory saving

min max average

1 9% 96% 30%
2 8% 98% 31%
3 6% 98% 34%

SUBMITTED FOR REVIEW TO IEEE TRANSACTIONS ON INDUSTRY INFORMATICS, SEPTEMBER 2024 10

30% 40% 50% 60% 70% 80% 90%
80%

82%

84%

86%

88%

90%

92%

94%

96%

Space saving

A
cc

ur
ac

y

Fixed-memory: 5Codebook Fixed-memory: 30 Fixed-memory: 15

High-inertia

Medium-inertia

Low-inertia

Fig. 11: Accuracy vs. memory saving Pareto front for code-
book and fixed-memory techniques

in Table I, the memory savings in the codebook method
increase with longer time series. This suggests that accuracy
in the high compression range may improve with extended
historical data availability.

C. Accuracy analysis for the proposed updating methods

The overall accuracy and memory size are presented in
Table II, where the memory size in the fixed-memory method
is 15 (i.e., M = 15) and the compression rate of the codebook
method is 30%.

TABLE II: Performance of the different methods in the solar
user identification problem

Month
Accuracy

Additive
Fixed-Memory

(low)
Fixed-Memory

(high)
Fixed-Memory

(medium) Codebook

1 94.0% 88.0% 92.7% 92.0% 94.0%
2 94.7% 86.0% 94.7% 96.0% 96.0%
3 96.0% 89.3% 92.7% 92.7% 96.0%

The codebook and additive methods show the overall best
accuracy among the three methods, followed by the fixed-
memory with high-inertia strategy. The accuracy of the fixed-
memory method with a low-inertia strategy significantly varies
with different data. Based on simulation studies in previous
sections, the main features of the three updating methods are
summarised in Table III.

D. Summary of the Performance Analysis and Implications

The simulation results reveal different performance char-
acteristics between methodologies. The 96% accuracy of the
additive method comes at the cost of linear memory growth,
making it unsuitable for long-term deployment. The fixed-
memory approach shows remarkable efficiency gains, reducing
computational complexity from O(lm) to O(Mm), where
M ≪ l. This represents an 85-90% reduction in processing
requirements for typical deployment scenarios.

The performance of the codebook-based method exhibits
data-dependent characteristics. For users with highly repeti-
tive patterns, compression ratios exceed 60%, while diverse
consumption profiles achieve 20-30% compression, without
compromising the accuracy. This variability suggests the
suitability of the method for different consumer segments,
with industrial or commercial applications likely benefiting
from higher compression rates due to more predictable usage
patterns.

V. CONCLUSION

This paper proposes three RM updating methods and six
sub-strategies for smart grid applications. The performance
and sensitivity of each method to its respective hyperpa-
rameters are analysed with a set of simulation studies. In
general, the additive method yields the most accurate out-
comes, although with an increased demand for memory and
computational resources. The fixed-memory method offers the
highest memory saving and fixed temporal complexity. The
three data elimination strategies are proposed that can be
used in different circumstances. The low-inertia strategy is
sensitive to behavioural changes and memory size; hence,
it is good for tracking changes. The high-inertia strategy
cannot detect sudden changes but is good at detecting similar
sub-patterns in daily data. The medium-inertia strategy is a
balanced option in terms of accuracy, memory saving, and
detecting changes. The codebook method is the most balanced
solution, providing more than 30% of memory saving without
sacrificing accuracy. With this method, both the codebook with
compressed representation and PD provide the same RM, but
the former can easily recover the whole time series while the
latter is anonymous. The memory savings of the codebook
method increase with the data size, making it a more robust
solution for storing long-term patterns or high-resolution data
for end users. Another significant advantage of the codebook
method is the privacy-preserving feature at the user’s end.

The authors envision three possible directions for future
work. Firstly, the memory size for the fixed-memory method
and the pre-defined threshold for the codebook-based method
were chosen based on educated guesses. These hyperparam-
eters require systematic optimisation as they are fundamen-
tally tied to data resolution and application requirements.
We plan to develop generalised selection strategies through
extended sensitivity analysis across diverse datasets. Secondly,
the extracted RM can be used in more applications, e.g.,
demand modelling, forecasting, and demand-side management
measures. For instance, it can help detect new EV users, new
Air Conditioners or heat pumps, or shifts between cooling
and heating regimes in near real-time. It could help detect
malicious behaviours, such as electricity theft. Future research
could focus on broadening the application of the proposed
framework to additional smart grid challenges. Third, our
study is limited to the data from the utility meters that are
accessible to aggregators and retailers. With the availability
of high-resolution data from smart meters, combined with our
memory-efficient updating strategies such as the fixed-memory
or codebook method, it becomes possible to identify a larger
number of appliances, providing better insight into consumer
behaviour and variations without memory outage concern [13],
[14].

REFERENCES

[1] G. Barbose, N. Darghouth, E. O. Shaughnessy, and S. Forrester, “Track-
ing the Sun Systems in the United States 2021 Edition,” no. September,
2021.

[2] M. R. Haq and Z. Ni, “Classification of electricity load profile data
and the prediction of load demand variability,” IEEE International
Conference on Electro Information Technology, vol. 2019-May, pp. 304–
309, 2019.

SUBMITTED FOR REVIEW TO IEEE TRANSACTIONS ON INDUSTRY INFORMATICS, SEPTEMBER 2024 11

TABLE III: A comparison of the features of the proposed RM updating method

Method Advantages Disadvantages Applications
Additive • Lossless SP values

• Simple
• Preserves data

• Memory intensive
• Highest time complexity

• Long-term behavioural studies with SP

Fixed-memory • Lowest memory requirement
• Fast update (low-inertia)
• Feature enhancement (high-inertia)
• Balanced performance (medium-inertia)

• Low accuracy
• Permanent knowledge elimination
(in low-inertia strategy)

• Short-term modelling
• Short-term tracking of changes

Codebook-based • Low memory requirement
• Preserve the changes from historical records
• Flexible
• High security (no sequential information)
• High compression ratio for long TS

• Cannot preserve original data
• Memory intensive for short TS

• Long-term users
• Sensitive data to preserve privacy

[3] B. P. Butunoi and M. Frincu, “Shapelet based classification of customer
consumption patterns,” in 2017 IEEE PES Innovative Smart Grid
Technologies Conference Europe, ISGT-Europe 2017 - Proceedings, vol.
2018-Janua, 2017, pp. 1–6.

[4] S. M. Bidoki, N. Mahmoudi-Kohan, M. H. Sadreddini, M. Z. Jahromi,
and M. P. Moghaddam, “Evaluating different clustering techniques for
electricity customer classification,” 2010 IEEE PES Transmission and
Distribution Conference and Exposition: Smart Solutions for a Changing
World, pp. 1–5, 2010.

[5] Q. Wang and V. Megalooikonomou, “A dimensionality reduction tech-
nique for efficient time series similarity analysis,” Information Systems,
vol. 33, no. 1, pp. 115–132, 2008.

[6] R. Yuan, S. A. Pourmousavi, W. L. Soong, G. Nguyen, and
J. A. Liisberg, “Irmac: Interpretable refined motifs in binary
classification for smart grid applications,” Engineering Applications
of Artificial Intelligence, vol. 117, p. 11, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0952197622005784

[7] Y. N. Silva, S. S. Pearson, J. Chon, and R. Roberts, “Similarity joins:
Their implementation and interactions with other database operators,”
Information Systems, vol. 52, pp. 149–162, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.is.2015.01.008

[8] G. De Francisci Morales and A. Gionis, “Streaming similarity self-join,”
Proceedings of the VLDB Endowment, vol. 9, no. 10, pp. 792–803, 2016.

[9] B. Chiu, E. Keogh, and S. Lonardi, “Probabilistic discovery of time
series motifs,” in Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, 2003, pp. 493–
498.

[10] C. C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F.
Silva, A. Mueen, and E. Keogh, “Matrix profile I: All pairs similarity
joins for time series: A unifying view that includes motifs, discords
and shapelets,” Proceedings - IEEE International Conference on Data
Mining, ICDM, pp. 1317–1322, 2017.

[11] R. Yuan, S. A. Pourmousavi, W. L. Soong, A. J. Black, J. A.
Liisberg, and J. Lemos-Vinasco, “Unleashing the benefits of smart
grids by overcoming the challenges associated with low-resolution
data,” Cell Reports Physical Science, vol. 5, no. 2, p. 101830, 2024.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2666386424000559

[12] Ausgrid. Solar home electricity data. [Online]. Avail-
able: https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/
Solar-home-electricity-data

[13] A. G. Ruzzelli, C. Nicolas, A. Schoofs, and G. M. O’Hare, “Real-
time recognition and profiling of appliances through a single electricity
sensor,” SECON 2010 - 2010 7th Annual IEEE Communications So-
ciety Conference on Sensor, Mesh and Ad Hoc Communications and
Networks, 2010.

[14] K. Carrie Armel, A. Gupta, G. Shrimali, and A. Albert, “Is
disaggregation the holy grail of energy efficiency? The case of
electricity,” Energy Policy, vol. 52, pp. 213–234, 2013. [Online].
Available: http://dx.doi.org/10.1016/j.enpol.2012.08.062

Rui Yuan received the B.Sc. degree in Telecom-
munication Engineering from Harbin Institute of
Technology, China, in 2016, the M.Sc. degree in
Electrical Engineering from the University of Mel-
bourne, Australia, in 2019, and the Ph.D. degree
in Electrical and Electronic Engineering from the
University of Adelaide, Australia, in 2025. He is
currently a load forecasting analyst at AGL. His
main research interest is the analysis and modelling
of energy consumption profiles of consumers. This
includes data mining, explainable machine learning,

synthetic data generation and time series analysis.

S. Ali Pourmousavi (Senior Member, IEEE) re-
ceived the B.Sc., M.Sc., and Ph.D. degrees (with
hons.) in electrical engineering, in 2005, 2008, and
2014, respectively. From 2014 to 2019, he was with
California ISO, NEC Laboratories America Inc.,
Technical University of Denmark, Kongens Lyngby,
Denmark, and The University of Queensland, Bris-
bane, Australia. He is currently a Senior Lecturer in
the school of Electrical and Mechanical Engineering,
the University of Adelaide, Australia. His current
research interests include mining and transportation

electrification, BTM flexibility aggregation and demand response.

Wen L. Soong (Fellow, IEEE) received the B.Eng.
degree in electrical engineering from the University
of Adelaide, Australia, in 1989, and the Ph.D. degree
in electrical engineering from the University of Glas-
gow, Glasgow, U.K., in 1993. From1994 to 1998, he
was with General Electric Corporate Research and
Development, Schenectady, NY, USA. In 1998, he
joined the University of Adelaide where is he is now
an Associate Professor. His research interests include
PM and reluctance machines, renewable energy gen-
eration, and energy storage in power systems.

https://www.sciencedirect.com/science/article/pii/S0952197622005784
http://dx.doi.org/10.1016/j.is.2015.01.008
https://www.sciencedirect.com/science/article/pii/S2666386424000559
https://www.sciencedirect.com/science/article/pii/S2666386424000559
https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data
https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data
http://dx.doi.org/10.1016/j.enpol.2012.08.062

SUBMITTED FOR REVIEW TO IEEE TRANSACTIONS ON INDUSTRY INFORMATICS, SEPTEMBER 2024 12

Jon A. R. Liisberg received the B.Sc. degree in
mathematics from the University of Copenhagen,
Denmark, in 2013, and the M.Sc. and Ph.D. degrees
in mathematical modelling and computation from
the Technical University of Denmark in 2015 and
2019, respectively. His Ph.D. was jointly funded by
Innovation Fund Denmark and Watts A/S. He is
currently employed as a Senior Data Scientist with
Watts A/S, with focus on developing and maintain-
ing models and methods that enhance utility data
and provide valuable insights, while also aiding the

operations of the business.

	Introduction
	Related Work
	Time series similarity measures
	Motif discovery and Matrix Profile
	Similarity profiles and refined motifs
	Limitations in the existing approaches

	The Proposed Dynamic Update Methods
	RM update with Additive method
	RM update with Fixed-memory method
	Different dropping strategies
	Hyperparameter justification for memory size

	RM update with Codebook-based method
	Codebook method with compressed representation
	Codebook without compressed representation

	Simulation studies
	Fixed-memory method: evaluation on dropping strategies and memory sizes
	Codebook: Compression rate and accuracy
	Accuracy analysis for the proposed updating methods
	Summary of the Performance Analysis and Implications

	Conclusion
	References
	Biographies
	Rui Yuan
	S. Ali Pourmousavi
	Wen L. Soong
	Jon A. R. Liisberg

